tính\(\frac{\frac{125}{8}+\frac{125}{97}+\frac{125}{576}+\frac{250}{991}}{\frac{25}{8}+\frac{25}{97}+\frac{25}{576}+\frac{50}{991}}\)
Tính
\(\frac{8-\frac{8}{5}+\frac{8}{25}+\frac{8}{125}}{9+\frac{9}{5}-\frac{9}{25}-\frac{9}{125}}.\frac{161616}{151515}\)
Tính:
a) A=\(\frac{3-\frac{1}{2}+\frac{1}{4}}{\frac{2}{3}-\frac{5}{6}+\frac{-3}{4}}\)
b) B=\(\frac{8-\frac{8}{5}+\frac{8}{25}-\frac{8}{125}}{9-\frac{9}{5}+\frac{9}{25}-\frac{9}{125}}:\frac{161616}{151515}\)
Ai nhanh và đúng nhất mk sẽ tick cho
tk mn
\(4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{164}\right):\left(\frac{_{-27}}{8}\right)\)
\(=\frac{89}{16}+25.\frac{369}{500}:\left(\frac{-27}{8}\right)\)
\(=\frac{89}{16}+\frac{369}{20}:\left(\frac{-27}{8}\right)\)
\(=\frac{89}{16}+\frac{-82}{15}\)
\(=\frac{23}{240}\)
Tính \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(|97\frac{2}{3}-125\frac{3}{5}|+97\frac{2}{5}-125\frac{1}{3}\)
Bài 1 : Tính
a) A = \(\frac{\frac{1}{12}-\frac{2}{9}-1}{\frac{5}{18}-\frac{-3}{4}-\frac{1}{9}}\)
Bài 2 : Tính
a) A = \(\frac{3-\frac{1}{2}+\frac{1}{4}}{\frac{2}{3}-\frac{5}{6}+\frac{-3}{4}}\) b) B = \(\frac{8-\frac{8}{5}+\frac{8}{25}-\frac{8}{125}}{9-\frac{9}{5}+\frac{9}{25}-\frac{9}{125}}\): \(\frac{161616}{151515}\)
Tính nhanh : A= \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)\(...\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(0\) \(....\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(0\)
Tính nhanh:
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
Ai làm nhanh, chi tiết thì mk tick cho!!!
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{1\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}\)
=1
Ta có:
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left[\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right]}=\frac{1}{4}\)
Lại có:
\(\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}=\frac{3\left[\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right]}{4\left[\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right]}=\frac{3}{4}\)
Vậy:
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}=\frac{1}{4}+\frac{3}{4}=1\)
TÍNH NHANH
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right)\cdot\cdot\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)