Cho p là số nguyên tố lớn hơn 3 , chứng tỏ p2 + 2009 là hợp số
1) Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p2+2009 là hợp số.
Ta có: $p$ là số nguyên tố $>3$
suy ra $p\not\vdots 3$
Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $
Mà $2009 \equiv 2 (mod 3)$
nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$
Hay $p^2+2009 \vdots 3$
mà $p^2+2009>3$ nên $p^2+2009$ là hợp số
Ta có: p� là số nguyên tố >3>3
suy ra p⋮/3�⋮̸3
Số chính phương chia 3 dư 0 hoặc 1 mà p2�2 là số chính phương
p2⋮/3�2⋮̸3 suy ra p2≡1(mod3)�2≡1(���3)
Mà 2009≡2(mod3)2009≡2(���3)
nên p2+2009≡3≡0(mod3)�2+2009≡3≡0(���3)
Hay p2+2009⋮3�2+2009⋮3
mà p2+2009>3�2+2009>3 nên p2+2009�2+2009 là hợp số
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Cho p là số nguyên tố lớn hơn 3
a/ p+8 là số nguyên tố. chứng tỏ p+16 là hợp số
b/p+14 là số nguyên tố. chứng tỏ 2p+5 la hợp số
c/2p+11 là số nguyên tố. chứng tỏ 4p+5 là hợp số
giúp tớ chứng minh đi. chỉ mỗi câu trả lời ai hiểu
xin lỗi bạn nhìn đề ko là đã hk hiểu rồi
cho p là số nguyên tố lớn hơn 3 chứng minh rằng p^2 +2009 là hợp số
p nguyên tố > 3 nên p ko chia hết cho 3
=> p^2 chia cho 3 dư 1 ( vì số chính phương chia 3 dư 0 hoặc 1 mà p^2 ko chia hết cho 3 )
=> p^2+2009 chia 3 dư 1+2009 = 2010
Mà 2010 chia hết cho 3 => p^2+2009 chia hết cho 3
Lại có : p^2+2009 > 3 => p^2+2009 là hợp số
Tk mk nha
Ta có : p là số nguyên tố lớn hơn 3
=> p lẻ
=> p^2 lẻ
=> p^2 + 2009 chẵn
Mà ta có : p > 3
=> p^2 > 3 => p^2 + 2009 > 3
=> p^2 + 2009 là hợp số ( ĐPCM )
Vì p là số nguyên tố lớn hơn 3 nên p có một trong các dạng 3k+1 ; 3k+2 ( k thuộc N* )
Với p = 3k + 1 thì \(p^2+2009=\left(3k+1\right)^2+2009=9k^2+6k+1+2009\)
\(=9k^2+6k+2010=3.\left(3k^2+2k+670\right)\)chia hết cho 3 và \(p^2+2009>3\)nên \(p^2+2009\)là hợp số
Với p = 3k + 2 thì \(p^2+2009=\left(3k+2\right)^2+2009=9k^2+12k+4+2009\)
\(=9k^2+12k+2013=3.\left(3k^2+4k+671\right)\)chia hết cho 3 và \(p^2+2009>3\)nên \(p^2+2009\)là hợp số
Vậy p là số nguyên tố lớn hơn 3 thì p^2+2009 là hợp số
cho 2 số nguyên tố liên tiếp p1 và p2 biet p1 lon hon p2 . Chứng minh p1+p2/2 là hợp số (p1,p2 lớn hơn 2)
cho a là số nguyên tố lớn hơn 3 và 8p + 1 cũng là số nguyên tố. chứng tỏ 8p-1 là hợp số
Bài 1:Cho p là số nguyên tố lớn hơn 3 và 8p-1 là số nguyên tố. Chứng tỏ rằng 4p+1 là hợp số.
cho p là 1 số nguyên tố lớn hơn 3 và p+8 là 1 số nguyên tố. chứng tỏ p+10 là hợp số
nhanh nhé ai giãi rõ và chính xác nhất mình sẽ k đúng
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Nếu p=3k+1 => p+8=3k+9 (chia hết cho 3) =>trái với đề bài
Vậy p=3k+2.
P=3k+2 => p+10=3k+12 (chia hết cho 3) => p+10 là hợp số