Với x>0, y>0. Chứng minh: \(\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)
cho x,y > 0 cmr \(\frac{1}{x^4+y^2+2xy^2}+\frac{1}{y^4+x^2+2yx^2}\ge\frac{1}{2xy\left(x+y\right)}\)
Chứng minh rằng giá trị của A luôn không âm với mọi x,y khác 0
\(A=\left(7x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Cho x,y,z thỏa mãn x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Chứng minh rằng
\(\frac{1}{\left(2xy+yz+zx\right)^2}+\frac{1}{\left(2yz+zx+xy\right)^2}+\frac{1}{\left(2xz+xy+yz\right)^2}\le\frac{3}{16x^2y^2z^2}\)
Cho x,y là các số thực thỏa mãn:\(\left\{{}\begin{matrix}0\le x\le y\le1\\2xy+y\le2\end{matrix}\right.\)
Chứng minh rằng: \(2x^2+y^2\le\frac{3}{2}\)
\(Cho:\)x ; y ; z là các số khác nhau đôi một \(\left(x\ne y\right);\left(y\ne z\right);\left(x\ne z\right)\)sao cho : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính các tổng sau : \(1.A=\frac{\left(yz-3\right)}{x^2+2yz}+\frac{\left(xz-3\right)}{y^2+2xz}+\frac{\left(xy-3\right)}{z^2+2xy}\)
\(2.B=\frac{\left(x^2-2yz\right)}{x^2+2yz}+\frac{\left(y^2-2xz\right)}{y^2+2xz}+\frac{\left(x^2-2xy\right)}{x^2+2xy}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}\le-2\) biết \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\) và xy>0
Giải PT và HPT:
1)\(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
3)\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\9xy\left(3x-y\right)+6=26x^3-2y^3\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\left(x+y+\frac{2y^2}{x-y}\right):\left(\frac{x+y}{2xy}-\frac{1}{x+y}\right)\)Đồng ý
\(\left(\frac{x+y}{2\left(x-y\right)}-\frac{x-y}{2\left(x+y\right)}+\frac{2xy}{x^2-y^2}\right)-\frac{2y}{x^3-y^3}\)
cho x,y,z>0 với xy+yz+zx=3
Chứng minh rằng \(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(x+z\right)}+\frac{1}{1+z^2\left(y+x\right)}\le\frac{1}{xyz}\)