Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Quý
Xem chi tiết
阮芳草
Xem chi tiết
Tiểu tinh linh
Xem chi tiết
trần quốc huy
Xem chi tiết
shitbo
9 tháng 2 2020 lúc 11:18

\(\text{Ta có:}\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)

còn lại ko tính đc bạn ktra lại đề

Khách vãng lai đã xóa
shitbo
9 tháng 2 2020 lúc 11:19

mk nhầm , chiều mk lm tiếp

Khách vãng lai đã xóa

Ta có \(\left(a-1\right)+\left(b-2\right)+\left(c-3\right)=6-6=0\)

\(\Rightarrow\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=> a=1 hoặc b=2 hoặc c=3

Xét a=1 => b+c=5

Ta có : \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0+\left(b+c-5\right).A=0\)

Tương tự với b=2,c=3 ta cũng được \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0\)

  \(\)

Khách vãng lai đã xóa
Hoang Duc Thinh
Xem chi tiết
Nguyễn Phan Ngọc Tú
Xem chi tiết
Võ Đông Anh Tuấn
14 tháng 10 2016 lúc 9:18

Từ gt , ta có :

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)

\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)

\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)

\(\Rightarrow N=0\)

Nguyễn Bảo Long
Xem chi tiết
Đỗ Nguyễn Quốc Kiên
30 tháng 10 2016 lúc 14:24

lớp 6 mà

Nguyễn Bảo Long
30 tháng 10 2016 lúc 14:28

lớp 9 đó

Phùng Minh Quân
25 tháng 2 2018 lúc 19:58

\(a)\) Ta có : 

\(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2015}\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\left(a+b+c\right).\frac{1}{2015}\)

\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{a+b+c}{2015}\)

\(\Leftrightarrow\)\(1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=\frac{2015}{2015}\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1-3\)

\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-2\)

Vậy ...

ONLINE SWORD ART
Xem chi tiết
Ngô Thị hồng nhiên q
Xem chi tiết