Cho 3 số a,b,c khác 0.Với điều kiện (a+b+c) (1/a+1/b+1/c)=1 Tính (a^11+b^11).( b^7+c^7).(a^2015+c^2015)
Cho a,b,c khác 0 thỏa mãn (a+b+c)(1/a+1/b+1/c)=1.Tính giá trị của P=(a^11+b^11)(b^3+c^3)(a^2015+c^2015)
Cho a,b,c là các số thực khác 0 thỏa mãn điều kiện:
\(\hept{\begin{cases}\text{a^2( b + c ) + b^2( c + a ) + c^2( a + b ) + 2abc = 0}\\a^{2015}+b^{2015}+c^{2015}=1\end{cases}}\)
Cho a, b, c, là 3 số thực khác 0 , thoả mãn điều kiện : a+b-c/c =b+c-a/a= c+a-b/b. Hãy tính giá trị của biểu thức B =(1+ b/a) (1+ a/c) (1+ c/b) Toán lớp 7 nha
cho a,b,c biết a+b+c=6 và (a-1)^3+(b-2)^3+(c-3)^3=0 tính (a-1)^2015+(b-2)^2015+(c-3)^2015
\(\text{Ta có:}\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)
còn lại ko tính đc bạn ktra lại đề
mk nhầm , chiều mk lm tiếp
Ta có \(\left(a-1\right)+\left(b-2\right)+\left(c-3\right)=6-6=0\)
\(\Rightarrow\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a=1 hoặc b=2 hoặc c=3
Xét a=1 => b+c=5
Ta có : \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0+\left(b+c-5\right).A=0\)
Tương tự với b=2,c=3 ta cũng được \(\left(a-1\right)^{2015}+\left(b-2\right)^{2015}+\left(c-3\right)^{2015}=0\)
\(\)
cho a,b,c là ba số thực khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)chung minh:
\(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}=\frac{1}{a^{2015}+b^{2015}+c^{2015}}\)
cho các số a,b,c thỏa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c};\)(a,b,c khác 0)
Tính \(N=\left(a^{15}+b^{15}\right)\left(b^{17}+c^{27}\right)\left(c^{2015}+a^{2015}\right)\)
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
a) Cho a + b +c = 2015 và \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2015}\)
Tính S = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
b) cho 2 số a,b thỏa mãn điều kiện a+b=1.Chứng minh a3 +b3 +ab lớn hơn hoặc bằng \(\frac{1}{2}\)
\(a)\) Ta có :
\(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2015}\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\left(a+b+c\right).\frac{1}{2015}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{a+b+c}{2015}\)
\(\Leftrightarrow\)\(1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=\frac{2015}{2015}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1-3\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-2\)
Vậy ...
Cho A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)(Tổng hai số bất kì trong ba số a,b,c khác 0). Biết a+b+c=7 và \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}=\dfrac{7}{10}\). Hãy chứng tỏ rằng A>\(1^8_{11}\)
Cho ba số a, b,c thỏa mãn: a+b+c = 1 và a^3+ b^3+c^3 =1. Tính A= a^2015+b^2015+c^2015