Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ichigo
Xem chi tiết
Nguyễn Anh Duy
28 tháng 10 2016 lúc 21:25

Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\) suy ra \(\left(b-a\right)\left(a-b\right)=ab\). Vế trái có giá trị âm vì là tích của hai số đối nhau khác 0, vế phải có giá trị dương vì là tích của hai số dương. Vậy không tồn tại hai số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Chú ý: Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\). Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)

\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)

\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0.\)

Nhưng giá trị này làm cho biểu thức không có nghĩa.

 

Bùi Hoàng Linh Chi
Xem chi tiết
Third Lapat Ngamchaweng
Xem chi tiết
Hoàng Phúc
8 tháng 5 2016 lúc 9:42

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=>\(\frac{b-a}{ab}=\frac{1}{a-b}\)

=>\(\left(b-a\right).\left(a-b\right)=ab\)

Ta có: b-a và a-b là 2 số đối nhau

=>(b-a).(a-b) < 0

Mà a.b > 0 (vì a;b là 2 số nguyên dương)

=>\(\left(b-a\right).\left(a-b\right)\ne ab\)

=>không tờn tại 2 số nguyên dương a;b khác nhau thỏa mãn đề bài

Không biết nữa
Xem chi tiết
Nguyễn Thị Thùy Dung
18 tháng 9 2017 lúc 21:45

KHÔNG TỒN TẠI

Không biết nữa
18 tháng 9 2017 lúc 21:46

Mong ác bạn trả lời đầy đủ, có giải thích, mk sẽ k

Tiểu Thiên Băng
18 tháng 9 2017 lúc 21:55

giả sử 1/a-1/b=1/a-b

khi đó b/ab-a/ab=1/a-b hay b-a/ab=1/a-b

=>(b-a).(a-b)=ab(hai tích chéo bằng nhau)

xét a-b và b-a là hai số đối nhau nên trong a-b và b-a có 1 số âm, 1 số dương

do đó (b-a).(a-b) là một số âm hay ab là số âm                                   (1)

mặt khác a,b là hai số dương(theo đề bài) nên ab là số dương                        (2)

từ (1) và (2) => (b-a).(a-b) ko bằng ab

khi đó ko tồn tại 2 số dương a,b khác nhau thỏa mãn 1/a-1/b=1/a-b

vậy.........

cô giáo mk dạy đó k nha

Jenny phạm
Xem chi tiết
Trần Thị Hà Phương
Xem chi tiết
Trần Thanh Dung
25 tháng 2 2016 lúc 6:05

Trường hợp 1 :

Giả sử a > b > 0 \(\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}<0;\frac{1}{a-b}>0\)

\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Trường hợp 2

Giả sử a < b \(\Rightarrow\frac{1}{a}>\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}<0\)

\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Vậy không tồn tại hay không có hai số nguyên dương a ,  b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Tý Quậy VN
Xem chi tiết
Trần Thanh Phương
11 tháng 9 2018 lúc 20:35

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\Rightarrow\left(a-b\right)\left(b-a\right)=ab\Rightarrow-\left(a-b\right)^2=ab\)

mà \(-\left(a-b\right)^2\le0\forall\left\{a;b\right\}\Rightarrow ab\le0\forall\left\{a;b\right\}\)=> a và b ko thể cùng dương

Vậy, ko tồn tại 2 số nguyên dương a và b

Thị Kim Qúy Nguyễn
11 tháng 9 2018 lúc 20:47

Ta có: 1/a -1/b = 1/(a-b) => (b-a)/ab = 1/(a-b) => (a-b)(a-b)= -ab (vô lí do (a-b)^2 lớn hơn hoặc =0 và ab dương)

=> Không tồn tại.

Dũng Lê Trí
Xem chi tiết
Kurosaki Akatsu
29 tháng 5 2017 lúc 10:55

Ta có :

a > b => \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)

a > b => a - b > 0 \(\Rightarrow\frac{1}{a-b}>0\)
Từ 2 ý trên và theo giả thuyết đề bài thì không tồn tại 2 giá trị a,b > 0 thõa mãn 

Dũng Lê Trí
29 tháng 5 2017 lúc 10:53

Bỏ chỗ a>b đi 

mathslover31072003
29 tháng 5 2017 lúc 10:54

\(\frac{b-a}{ab}=\frac{1}{a-b}\)

=> ab = - (a - b)2

=> - ab = a2 - 2ab + b2

=> 0 = a2 -ab + b2

= > 0 = ( a - b/4 )+ 3b2/4

=> vô lý. vậy không tồn tại a,b.

nguyen the bao
Xem chi tiết
HOÀNG KIM MẠNH  HÙNG
5 tháng 12 2021 lúc 20:05

TL

undefined

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

Khách vãng lai đã xóa