So sánh A và B
A = \(\frac{10^{10}-1}{10^{11}-1}\)
B = \(\frac{10^9-1}{10^{10}-1}\)
\(A=\frac{10^{10}+1}{10^{11}+1}\)\(B=\frac{11^9+1}{11^{10}+1}\)SO SÁNH A VÀ B
A<B.Nếu bạn k đúng cho mình mình sẽ tình bày cách làm cho.
So sánh:
A=\(\frac{10^{10}-1}{10^{11}-1}\)và B=\(\frac{10^9-1}{10^{10}-1}\)
10A=1011-10/1011-1
=1011-1-9/1011-1
=1 - 9/1011-1
10B=1010-10/1010-1
=1010-1-9/1010-1
=1 - 9/1010-1
Vì 9/1011-1<9/1010-1 nên 1 - 9/1011-1>1 - 9/1010-1
hay 10A>10B
=>A>B(vì 10>0)
\(A=\frac{10^{10}-1}{10^{11}-1}\)
Nhân cả hai vế của A với 10 ta có
\(10A=\frac{10\times\left(10^{10}-1\right)}{10^{11}-1}\)
\(10A=\frac{10^{11}-10}{10^{11}-1}\)
\(10A=\frac{10^{11}-1+9}{10^{11}-1}\)
\(10A=\frac{10^{11}-1}{10^{11}-1}+\frac{9}{10^{11}-1}=1+\frac{9}{10^{11}-1}\left(1\right)\)
\(B=\frac{10^9-1}{10^{10}-1}\)
Nhân cả hai vế của B với 10 ta có
\(10B=\frac{10\times\left(10^9-1\right)}{10^{10}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}\)
\(10B=\frac{10^{10}-1+9}{10^{10}-1}\)
\(10B=\frac{10^{10}-1}{10^{10}-1}+\frac{9}{10^{10}-1}=1+\frac{9}{10^{10}-1}\left(2\right)\)
\(Từ\left(1\right)và\left(2\right)\Rightarrow1+\frac{9}{10^{11}-1}< 1+\frac{9}{10^{10}-1}\)
\(\Rightarrow10A< 10B\)
Vậy A < B
ta có
\(10A=\frac{10^{11}-10}{10^{11}-1}=\frac{10^{11}-1+11}{10^{11}-1}=\frac{10^{11}-1}{10^{11}-1}+\frac{11}{10^{11}-1}\)
\(=1+\frac{11}{10^{11}-1}\)
\(10B=\frac{10^{10}-10}{10^{10}-1}=1+\frac{11}{10^{10}-1}\left(tươngtựA\right)\)
vì mẫu càng nhỏ thì phân số càng lớn nên
\(\frac{11}{10^{11}-1}< \frac{11}{10^{10}-1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A<B
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
\(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
SO SÁNH A VÀ B
cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11}+1}\).So sánh A và B
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow A< B\)
bài này ko cần cách làm tớ chỉ ra kết quả thui
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}\),\(B=\frac{10^{10+1}}{10^{11}+1}\)
So sánh A và B
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
1)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy A < B
Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b
\(10A=\frac{10^{12}-10}{10^{12}-1}\); \(10B=\frac{10^{11}+10}{10^{11}+1}\)
=> \(10A=\frac{\left(10^{12}-1\right)-9}{10^{12}-1}\); \(10B=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}\)
=> \(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\); \(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\); \(10B=1+\frac{9}{10^{11}+1}\)
Ta có: \(10A=1-\frac{9}{10^{12}-1}< 1\); \(10B=1+\frac{9}{10^{11}+1}>1\)
=> \(10A< 10B\)
=> \(A< B\)