a, Cho tổng A= 428+428+430 chứng tỏ rằng A chia hết cho 28
b, Tính tổng S = 22012-22011-........-2-1
Cho A = 20 + 21 + 22 + 23 +...+ 22011 + 22012
Hoi A chia cho 7 du bao nhieu?
1 chứng tỏ rằng trong 1 phép tính trừ tổng của số bị trừ và hiệu bao giờ cũng chia hết cho 2
2 hai số không chia hết cho 3 khi chia cho 3 được những số dư khác nhau
a chưng tỏ rằng tổng cùa hai số đó chia hết cho 3
b chứng tỏ rằng hiệu của hai số đó chia hết cho 3
cho tổng
S=1+3+32+33+....+399
a} tính tổng của S
b chứng tỏ rằng S chia hết cho 4
a) S= 1+3+32+33+...+399
3S= 3.(1+3+32+33+...+399)
3S= 3+32+33+34+...+3100
3S - S =2S= 3100-1
Vậy S= \(\frac{3^{100}-1}{2}\)
1,Tính :
1\(^2\) - 2\(^2\) + 3\(^2\) - 4\(^2\) + ... + 99\(^2\) - 100\(^2\) + 101\(^2\)
2,a) Chứng tỏ rằng : Tổng của năm số nguyên liên tiếp chia hết cho 5
b) Tổng của n số nguyên lẻ liên tiếp chia hết cho n
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
cho tổng S=1+2+2^2+2^3+....+2^59 a) so sánh tổng S với 2^60-1 b) chứng tỏ S chia hết cho 3,7,15
S=1+2+2^2+2^3+....+2^59 chia hết cho 3
S=(1+2)+(2^2+2^3)+..+(2^58+2^59)
S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)
S=1x3+2^2x3+....+2^58x3
S=3x(1+2^2+.....+2^58)chia hết cho 3
Vậy S chia hết cho 3
tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số
you học lớp mấy
a) Ta có: \(S=1+2+2^2+...+2^{59}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)
\(\Rightarrow S=2^{60}-1\)
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
a)chứng tỏ rằng tổng 3 stn liên tiếp là số chia hết cho 3
b)a)chứng tỏ rằng tổng 4 stn liên tiếp là số không chia hết cho 4
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
a, chứng tỏ rằng tổng của 2 số tự nhiên liên tiếp thì không chia hết cho 2
b, chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp thì không chia hết cho 3
cu 2 so tu nhien lien tiep thi co 1 so chan 1 so le
suy ra: le + chan= le
ma so le ko chia het cho 2
suy ra tong hai so tu nhien lien tiep khong chia het cho 2
Cho A=1+2+2^2+2^3+......+2^11
Không tính tổng A , hãy chứng tỏ rằng A chia hết cho 3
GIẢI CHI TIẾT NHA!
\(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right)\)
\(A=3+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(A=3+2^2.3+...+2^{10}.3\)
\(A=3\left(1+2^2+...+2^{10}\right)\)
\(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
!!!