Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hòa
Xem chi tiết
Nguyễn Khánh Hiển Long
9 tháng 7 2021 lúc 17:09

Dùng cái đầu đi ạ

Khách vãng lai đã xóa
Nguyễn Thị Lan
Xem chi tiết
Nguyễn Hoài Phương
31 tháng 3 2018 lúc 16:30

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

roronoa zoro
Xem chi tiết
Vũ Huy Hoàng
22 tháng 2 2020 lúc 15:46

Cầm máy tính ra giải là xong

Khách vãng lai đã xóa
roronoa zoro
22 tháng 2 2020 lúc 15:55

???????????????????????????????

Khách vãng lai đã xóa
Vũ Huy Hoàng
22 tháng 2 2020 lúc 16:06

Ta có hệ pt: \(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)

\(\Leftrightarrow9-2=x^2+2xy+3y^2-2x^2-2xy-y^2\)

\(\Leftrightarrow-x^2+2y^2=7\)

Đến đây thì tịt rồi hihi( mình mới lớp 8)

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
Harry James Potter
Xem chi tiết
Tran Le Khanh Linh
9 tháng 5 2020 lúc 18:32

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

Khách vãng lai đã xóa
Bùi Minh Quân
Xem chi tiết
Blue Moon
Xem chi tiết
olm
Xem chi tiết
Vũ Đức Minh
15 tháng 3 2020 lúc 20:05

hãy dùng cái đầu bạn nhé :))))

Khách vãng lai đã xóa

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

Khách vãng lai đã xóa
Nguyễn Tiến Đức Anh
10 tháng 7 2021 lúc 8:52

109ubbbbbbbhy3333333333333

Khách vãng lai đã xóa
Tran Huong
Xem chi tiết