nhân chéo 2 vế sẽ thành hpt đẳng cấp
\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)
\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)
\(\Leftrightarrow16x^2+14xy+3y^2=0\)
\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)
nhân chéo 2 vế sẽ thành hpt đẳng cấp
\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)
\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)
\(\Leftrightarrow16x^2+14xy+3y^2=0\)
\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
Giải hệ pt sau :
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}\left(x-y\right)^2\left(3x^2+2xy+3y^2-20\right)+1=0\\2x^2-5x-2xy+5y=0\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}2x^2+3xy=3y-13\\3y^2+2xy=2x+11\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}2x^2+2xy+3y^2=7\\4xy-x^2-2y^2=1\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
Giải hệ phương trình:\(\hept{\begin{cases}3x^2+3y^2+\frac{1}{x^2-2xy+y^2}\\2x+\frac{1}{x-y}=5\end{cases}}=2\left(10-xy\right)\)