Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Lâm
Xem chi tiết
T.Ps
31 tháng 5 2019 lúc 18:46

#)Giải :

Áp dụng :

Số chính phương chia 3 dư 0 hoặc 1

Số chính phương chia 4 dư 0 hoặc 1 

Đặt A = ( x - y )( x - z )( y - z)

Vì một số chính phương chia 3, 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3 

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 ( 1 )

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất hai số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 ( 2 ) 

Từ ( 1 ) và ( 2 ) kết hợp với ƯCLN ( 3, 4 ) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12 

                #~Will~be~Pens~#

doremon
Xem chi tiết
Trần Tuyết Như
27 tháng 5 2015 lúc 8:21

bài này bạn giải rồi mà

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

Đinh Tuấn Việt
26 tháng 5 2015 lúc 16:11

Cậu lấy trong quyển Toán nâng cao nào vậy ?

Nguyễn Tuấn Tài
26 tháng 5 2015 lúc 20:24

thế mà cũng được 3 ****

Trần Thị Thịnh
Xem chi tiết
doremon
27 tháng 5 2015 lúc 6:04

Ap dụng:

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

 

Trần Tuyết Như
26 tháng 5 2015 lúc 22:53

BÀI NÀY TRONG CÂU HỎI HAY MÀ

Sana .
10 tháng 2 2021 lúc 21:43

Hình như tớ nhớ ffffffg hỏi một câu tương tự và bạn trần như trả lời xong rồi k đúng .

Khách vãng lai đã xóa
Trần Uyển Bình
Xem chi tiết
Đặng Viết Thái
Xem chi tiết
Lê Nhật Khôi
31 tháng 3 2019 lúc 11:42

1/Vì x,y,z là số chính phương nên x,y,z chia 3 dư 0 hoặc 1 và x,y,z chia 4 dư 0 hoặc 1 (tự CM) 

TH1: x,y,z chia 3 dư 0 hoặc 1

Có: (x-y)(y-z)(z-x)

Vì x,y,z chia 3 dư 0 hoặc 1 nên có ít nhất 1 số chia hết cho 3

Suy ra: (x-y)(y-z)(z-x) chia hết cho 3 (1)

Tương tự: (x-y)(y-z)(z-x) chia hết cho 4 (2)

Từ (1) và (2)

Vậy (x-y)(y-z)(z-x) chia hết cho 12

2/ Có: 

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow5\left(m-n\right)\left(m+n\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\left(m-n\right)\left(5m+5n+1\right)=m^2\)

Do đó: để CM m-n và 5m+5n+1 là scp thì chúng phải là 2 số nguyên tố cùng nhau

Gọi d là \(ƯCLN\left(m-n;5m+5n+1\right)\)

Do đó: \(\hept{\begin{cases}m-n⋮d\\5m+5n+1⋮d\end{cases}\Leftrightarrow m^2⋮d^2}\Leftrightarrow m⋮d\)

Suy ra: \(n⋮d\)

Hay: \(5m+5n⋮d\)

Mà \(5m+5n+1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì thế m-n và 5m+5n+1 là 2 số nguyên tố cùng nhau

Vậy KL.....

Nhóc_Siêu Phàm
Xem chi tiết
Hypergon
Xem chi tiết
Phan Bảo Huân
Xem chi tiết
 ☘ Nhạt ☘
Xem chi tiết