Cho A = 2004 + 20042 + 20043 + 20044 + 20045 + 20046 +............................+ 20048 + 200410 . Chứng minh rằng: A chia hết cho 2005
Chứng minh rằng các số sau không phải là số chính phương :
a) 31 + 32 + 33 + ... + 319 + 320
b) 20044 + 20043 + 20042 + 22
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Chứng minh rằng:
C=(2004+2004^2+2004^3+...+2004^10)chia hết cho 2005
Chứng minh rằng
a) 76+75-74 chia hết cho 55
b) 2004100+200499chia hết cho 2005
Bài làm :
\(a,7^6+7^5-7^4\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55⋮55\)
=> đpcm
\(b,2004^{100}+2004^{99}\)
\(=2004^{99}.\left(2004+1\right)\)
\(=2004^{99}.2005⋮2005\)
=> đpcm
Học tốt nhé
76 + 75 - 74
= 74( 72 + 7 - 1 )
= 74( 49 + 7 - 1 )
= 74.55 chia hết cho 55 ( đpcm )
2004100 + 200499
= 200499( 2004 + 1 )
= 200499.2005 chia hết cho 2005 ( đpcm )
Bài làm :
a) Ta có :
76 + 75 - 74
= 74( 72 + 7 - 1 )
= 74( 49 + 7 - 1 )
= 74.55 ⋮ 55
=> Điều phải chứng minh
b) Ta có :
2004100 + 200499
= 200499( 2004 + 1 )
= 200499.2005 ⋮ 2005
=> Điều phải chứng minh
Chứng minh rằng:
2004100 + 200499 chia hết cho 2005
a,Chứng minh: C=(2004+2004 mũ 2 + 2004 mũ 3+....+2004 mũ 10) chia hết cho 2005
b,Tìm số nguyên n sao cho n+4 chia hết cho n+1
Chứng minh rằng
a,2002^2004-1002^1000 chia hết cho 10 b,1999^2001+201^2005 chia hết cho 10
tớ cũng ko biết
nếu mày biết thì nói cho tao biết nhá
thanks trước nếu mày cho tao biết
mày cho tao biết thì tao sẽ cho mày 200 triệu
A=2004+20042+20043+....+200410.Chứng minh A chia hết cho 2005
ta có A=2004+20042+...........................................+200410 tương đương A=2004.(1+2004)+20042.(1+2004)+..............+20049(1+2004)
A=2004.2005+20042.2005......................+20049.2005
ta có A=2005(2004+20042................20049)
suy ra A=[ 2005(2004+20042...............20049)] chia hết cho 2005
tương đưong A=(2004+20042................+200410) chia hết cho 2005
Cho mình hỏi câu này
Chứng minh rằng
a) 35^2005 - 35^2004 chia hết cho 17
b) 27^3 + 9^5 chia hết cho 4
a) ta có : \(35^{2005}-35^{2004}=35^{2004}\left(35-1\right)=35^{2004}.34=35^{2004}.2.17⋮17\)
\(\Rightarrow35^{2005}-35^{2004}\) chia hết cho \(17\) (đpcm)
b) ta có : \(27^3+9^5=\left(3^3\right)^3+\left(3^2\right)^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4⋮4\)
vậy \(27^3+9^5\) chia hết cho \(4\) (đpcm)