Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Tuấn Tài
30 tháng 10 2015 lúc 12:13

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

Ngô Tuấn Vũ
30 tháng 10 2015 lúc 12:08

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

i love math
Xem chi tiết
Nguyễn Ngọc Quý
28 tháng 11 2015 lúc 22:01

Nếu p chia 3 dư 2 => p + 4 chia hết cho 3

=> p chia 3 dư 1

=> p + 8 chia hết cho 3

=> dpcm

Đỗ Việt Bách
Xem chi tiết
Trần Việt Anh
31 tháng 1 2017 lúc 21:01

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Trần Thùy Trang
31 tháng 1 2017 lúc 21:01

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 

Nguyễn Phương My
31 tháng 1 2017 lúc 21:16

 Đem p chia cho 3 sẽ xảy ra 3 khả năng về số dư , số dư chỉ có thể là 0,1,2 . Mà p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 . Nhưng p+4 là số nguyên tố nên p không thể có dạng 3k+2 \(=>\)p có dạng 3k+1\(=>p+8=3k+9\).Mà 3k+9 \(⋮\)3 nên p+8 \(⋮\)3 (3 là số nguyên tố) . Vậy p+8 là hợp số nếu  p và p+4 là số nguyên tố (p>3)

rongxanh
Xem chi tiết
Seu Vuon
Xem chi tiết
lê bảo ngân
Xem chi tiết
lê hồng kiên
Xem chi tiết
Nguyễn Phương Uyên
5 tháng 2 2018 lúc 16:54

p ∈ P ; p > 3

=> p = 3k + 1 hoặc p = 3k + 2  (k ∈ N*)

xét p = 3k+1

=> p + 8 = 3k + 1 + 8

=> p + 8 = 3k + 9 ⋮ 3 là hợp số

xét p = 3k + 2

=> p + 4 = 3k + 2 + 4

=> p + 4 = 3k + 6 ⋮ 3 là hợp số      ;         mà theo đề bài    p + 4 là số nguyên số 

=> p = 3k + 2 (loại)

vậy p + 8 là hợp số 

lê hồng kiên
Xem chi tiết
Nguyễn Phương Uyên
5 tháng 2 2018 lúc 18:37

p ∈ P ; p > 3

=> p = 3k + 1 hoặc p = 3k + 2  (k ∈ N*)

xét p = 3k+1

=> p + 8 = 3k + 1 + 8

=> p + 8 = 3k + 9 ⋮ 3 là hợp số

xét p = 3k + 2

=> p + 4 = 3k + 2 + 4

=> p + 4 = 3k + 6 ⋮ 3 là hợp số      ;         mà theo đề bài    p + 4 là số nguyên số 

=> p = 3k + 2 (loại)

vậy p + 8 là hợp số 

Đặng Thanh Thủy
Xem chi tiết
Nguyễn Thị Hồng
24 tháng 11 2014 lúc 12:33

P là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1 chia hết cho 2.

P là số nguyên tố lớn hơn 3 nên có dạng 3k+1 hoặc 3k+2.

Dạng p=3k+2 thì p+4 là hợp số, trái với đề bài. Vậy p có dạng 3k+1, khi đó p+8 chia hết cho và là hợp số. ĐPCM