Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang hello
Xem chi tiết
Lucy Heartfilya
Xem chi tiết
Phạm Ngọc Uyên
Xem chi tiết
Quý Lương
26 tháng 11 2018 lúc 15:29

Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)

Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.

Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121

Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố 

Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7

                                        và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3

                                        và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...

Bạn Thân Yêu
Xem chi tiết
Dũng Senpai
31 tháng 7 2016 lúc 22:02

\(=10.a+b-10.b-a\)

\(=9.a-9.b\)

\(=9.\left(a-b\right)\)

Mà số này là số chính phương nên a-b chỉ có 1 giá trị nên a-b=9.

Mà a>0 nên a bằng 9 và b=0.

Số cần tìm là 90.

Chúc em học tốt^^

Minh Khang Dao
Xem chi tiết
trương thị hoàng nhi
Xem chi tiết
Mr Lazy
4 tháng 7 2015 lúc 11:54

Giả sử a là một số có lập phương là số có 4 chữ số 

\(\Rightarrow1000\le a^3\le9999\Rightarrow\sqrt[3]{1000}=10\le a\le\sqrt[3]{9999}\approx21,5\)

\(\Rightarrow10\le a\le21\)

Ta kiểm tra xem với giá trị nào của a \(\left(10\le a\le21\right)\) thì \(a^3\) là một số chính phương (thử bằng máy tính ...)

Ta có: \(16^3=4096=64^2\)

Vậy tìm được 1 số là 4096 = 642 = 163

Quyên Bùi Hà
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Khách vãng lai đã xóa
Quân Tạ Minh
Xem chi tiết
v bts
24 tháng 9 2017 lúc 19:52

mị lớp > chị nên đừng hỏi tui cái này

Lê Nguyễn Kì Duyên
Xem chi tiết