Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Anh
Xem chi tiết
lam ngo
Xem chi tiết
redf
Xem chi tiết
Trà My
Xem chi tiết
tth_new
18 tháng 3 2019 lúc 19:23

Ta sẽ chứng minh c là cạnh nhỏ nhất.

Thật vậy,giả sử c không phải là cạnh nhỏ nhất.

Giả sử \(c\ge a\Rightarrow c+c\ge a+c>b\Rightarrow2c>b\Leftrightarrow4c^2>b^2\)

Do \(c\ge a\) nên \(4c^2+c^2=5c^2\ge a^2+b^2\) (trái với gt)

Với \(c\ge b\) chứng minh tương tự của dẫn đến vô lí.

Do đó c là cạnh nhỏ nhất.Khi đó:

\(a+b+c>3c\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o>3.\widehat{C}\Leftrightarrow\widehat{C}< 60^o\) (đpcm)

Không chắc nha!Sai đừng trách.

Trà My
18 tháng 3 2019 lúc 20:08

Giả sử \(c\ge a>0\)\(\Rightarrow c^2\ge a^2\)mà \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\Rightarrow b^2>4a^2\Rightarrow b>2a\) (1)

Vì \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\Rightarrow b^2>4c^2\Rightarrow b>2c\)(2)

Từ (1) và (2) => 2b>2a+2c => b> a + c (vô lý) => c<a

Tương tự ta được c<b => c là độ dài cạnh nhỏ nhất

=> \(\widehat{C}\)là góc nhỏ nhất \(\Rightarrow\widehat{C}< \widehat{A}\)và \(\widehat{C}< \widehat{B}\)

=> \(3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{C}< 60^o\)

Vậy \(\widehat{C}< 60^o\)(đpcm)

Nguyễn Xuân Dũng
Xem chi tiết
Nguyễn Thái Anh
Xem chi tiết
Nguyễn Xuân Dũng
Xem chi tiết
Songoku Sky Fc11
29 tháng 7 2017 lúc 10:03

CM :nếu a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất - Đại số - Diễn đàn Toán học

Đặng Thu Trang
Xem chi tiết
Hồng Tân Minh
Xem chi tiết
Hoàng Quỳnh Phương
21 tháng 4 2017 lúc 20:17

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?