Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nano Thịnh
Xem chi tiết
Phan Thanh Tịnh
Xem chi tiết
Nguyễn Thiều Công Thành
14 tháng 8 2016 lúc 8:32

ta có:\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)

\(\Rightarrow a-2\sqrt{ab}+b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

dấu "=" xảy ra khi a=b

baocualo
14 tháng 8 2016 lúc 7:14

Cho  A bằng 34x89y

tìm x y biết:

A chia hết cho 4 chia hết cho 3 chia 2 dư1 chia 5 dư 4

tích đúng cho ai hợp lý

Nguyên
14 tháng 8 2016 lúc 7:17

\(\frac{a+b}{2}>=\sqrt{ab}\)

\(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2>=2\sqrt{ab}\)

\(\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2>=0\)

\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)luôn đúng

<=>\(\frac{a+b}{2}>=\sqrt{ab}\)

k giúp mình nhé

Dũng Senpai
Xem chi tiết
Nguyễn Linh Chi
7 tháng 8 2019 lúc 18:44

Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?

Dũng Senpai
7 tháng 8 2019 lúc 21:17

dạ a,b,c>0 ạ.em quên mất 

Nguyễn Linh Chi
7 tháng 8 2019 lúc 21:39

Với a, b, c >0

\(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\ge\frac{ab+bc+ac}{a^2+b^2+c^2}\) (1)

<=> \(1-\left(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\right)\le1-\frac{ab+bc+ac}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{1}{3}-\frac{abc}{a^3+b^3+c^3}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-ac-bc\right)\left(\frac{1}{a^2+b^2+c^2}-\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\right)\ge0\)(2)

Ta có: \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)

Với a,b, c>0

(1) <=> \(\frac{1}{a^2+b^2+c^2}\ge\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^3+2b^3+2c^3-ab^2-ac^2-ba^2-bc^2-ca^2-cb^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+a^2\left(a-c\right)+b^2\left(b-a\right)+b^2\left(b-c\right)+c^2\left(c-a\right)+c^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(a-c\right)^2\ge0\)Luôn đúng với mọi a, b, c dương

Vậy (1) đúng

"=" xảy ra <=> a=b=c

Min Cute
Xem chi tiết
Nguyen Tran Tuan Hung
1 tháng 10 2017 lúc 16:13

Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, ) 
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*) 
G/s bdt đề bài đúng, ta có: 
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0 
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e) 
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng 
Vậy ta có dpcm. 
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v.... 
Chúc bạn học giỏi, chào bạn!  

Trường lại
Xem chi tiết
kudo shinichi
29 tháng 1 2019 lúc 18:24

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

Nguyễn Khắc Quang
Xem chi tiết

Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2+b^2-2ab\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge2ab+a^2+b^2=\left(a+b\right)^2\left(1\right)\)

Chia cả 2 vế của \(\left(1\right)\)cho 4 , ta được :

\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Văn Thắng Hồ
Xem chi tiết
Be Hoang
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết