Cho tứ giác ABCD có \(\widehat{B}+\widehat{D}\)= 180 độ. E là giao điểm của AD và BC. F là giao điểm của AB và CD. Cho điểm P sao cho EP và FP lần lượt là phân giác \(\widehat{E},\widehat{F}\)CMR. \(\widehat{EPF}\)= 90 độ
Cho tứ giác ABCD có \(\widehat{B}+\widehat{D}\)= 180 độ. E là giao điểm của AD và BC. F là giao điểm của AB và CD. Cho điểm P sao cho EP và FP lần lượt là phân giác \(\widehat{E},\widehat{F}\)CMR. \(\widehat{EPF}\)= 90 độ.
Mọi người giúp em gấp với ạ. Em xin cảm ơn. ^-^
Ta có: AB=BC (gt)
Suy ra: Tam giác ABC cân.
Nên (1)
Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)
Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)
~~~~ học tốt~~~~
Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)
Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)
Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)
(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)
(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)
=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)
=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)
=> \(\widehat{EPF}=\widehat{P}=90^o\)
Cho tứ giác ABCD có \(\hat{A}\)= 100o, \(\widehat{B}\)= 100o, \(\widehat{D}\)= 80o. Lấy E,F lần lượt là trung điểm của AD, BC. O là giao điểm của AC và BD.
a) CMR: ABCD là hình thang cân và tính góc C.
b) Cho AB = 20 cm, CD = 30cm. Tính EF, EO, FO.
c) CMR: \(\Delta\)ABC = \(\Delta\)ABD, \(\Delta\)ACD = \(\Delta\)BDC, \(\Delta\)AEO = \(\Delta\)BFO.
d) Giả sử AD = 20cm. Tính BC, góc ABD, góc ADB, góc AOD, góc AOB.
Tứ giác ABCD có 2 góc đối \(\widehat{A}+\widehat{C}=180^o\)
E là giao điểm của AD và BC. F là giao điểm của AB và CD . Tia phân giác của góc E cắt AB và CD ở M và N . Tia phân giác của góc F cắt AD và BC ở H và K . CHứng minh răng : MHNK là hình thoi .
cho tứ giác ABCD có \(\widehat{A}=60^o,\widehat{B}=75^o,\widehat{D}=90^o\) , AB=AD. Gọi G là giao điểm của BC và AD, E là giao điểm của tia phân giác \(\widehat{A}\) với BC
CMR: BC=EG
Cho tứ giác ABCD có AD=BC. Gọi M,N lần lượt là trung điểm của AB và CD. Đường thẳng MN cắt AC và BC tại E và F. Chứng minh \(\widehat{AEM}\)=\(\widehat{MFB}\)
Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)
An Nhiên ơi .bạn sai ở 1 chỗ ở hàng thứ 8 từ dưới lên là
góc ONM chứ kp góc OMN
Nhưng mik cx k đúng cho bn r
Cho tứ giác ABCD có AD = BC. M, N tương ứng là trung điểm của AB, CD. MN lần lượt cắt AD, BC tại E, F. Chứng minh rằng \(\widehat{AEM}=\widehat{BFM}\)
Tứ giác ABCD có AD = BC. Gọi M,N lần lượt là trung điểm AB và CD. Tia MN cắt AD ở E và Cắt BC ở F
CMR : \(\widehat{AEM}=\widehat{BFM}\)
Nối BD. Gọi O là trung điểm DB
Xét ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
⇒⇒ OM là đường trung bình ABD
⇒⇒ OM // AD, OM = 1/2 AD ( đl)
⇒⇒góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tụ ta c/m được ON là đường trung bình tam giác DBC
⇒⇒ON // BC; ON = 1/2 BC
⇒⇒góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = BC (gt)
⇒⇒OM=ON ( 1/2 AD)
Xét OMN
có OM = ON
⇒⇒Tam giác OMN cân tại O ( đn)
⇒⇒góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) ⇒⇒ góc AEM = MFB ( đpc/m)
cho nửa đường tròn (O) đường kính AB và C là một điểm thuộc nửa đường tròn sao C khác A, B và AC < CB . Điểm D nằm trên dây cung BC sao cho \(\widehat{DOC}=90^0\) E là giao điểm của AD và BC. F là giao điểm của AC và BD.
a) chứng minh tứ giác CEDF nội tiếp
b) chúng minh FC.FA= FD.FB
c) Gọi I là trung điểm của FE. Chứng minh rằng IC IC là tiếp tuyến của (O)
d) Khi C thay đổi thỏa mãn điều kiện của bài toán thì I thuộc đường tròn cố định nào?
Cho tam giác $ABC$ ($AB < AC$), có ba góc nhọn nội tiếp đường tròn $(O)$ và $D$ là hình chiếu vuông góc của $B$ trên $AO$ sao cho $D$ nằm giữa $A$ và $O$. Gọi $M$ là trung điểm $BC$, $N$ là giao điểm của $BD$ và $AC$, $F$ là giao điểm của $MD$ và $AC$. $E$ là giao điểm thứ hai của $BD$ với đường tròn $(O)$, $H$ là giao điểm của $BF$ và $AD$. Chứng minh rằng:
a/ Tứ giác $BDOM$ nội tiếp và \(\widehat{MOD}+\widehat{NAE}=180^o\).
b/ $DF//CE$, từ đó suy ra $NE.NF = NC.ND$.