mỗi điểm của mặt phẳng được tô bởi 1 trong 2 màu đỏ, đen. Chứng tỏ rằng tồn tại một tam giác đều mà các đỉnh của nó chỉ được tô bằng một màu
Giải giúp bài này làm không quen
lấy mỗi điểm của mặt phẳng dc tô bằng một trong hai màu đen và đỏ. chứng tỏ rằng tồn tại một tam giác đều mà các đỉnh của nó chỉ đc tô một màu.
Cho hình đa giác đều chín cạnh. Mỗi đỉnh của nó được tô bằng một trong hai màu trắng hoặc đen. Chứng minh rằng tồn tại hai tam giác phân biệt có diện tích bằng nhau, mà các đỉnh của mỗi tam giác được tô cùng màu.
Cho mỗi điểm trên mặt phẳng được tô bằng 2 màu xanh và đỏ. Chứng minh rằng tồn 1 tam giác mà 3 đỉnh và trọng tâm cùng màu.
Đề bài thiếu, mặt phẳng có bao nhiêu điểm? Và có 3 điểm nào trong số chúng thẳng hàng hay không?
Nếu mặt phẳng có n điểm ( n ≥ 5 ) và không có 3 điểm nào trong số chúng thẳng hàng thì theo nguyên lý Dirichlet, luôn có tối thiểu \(\frac{n}{2}\)điểm cùng màu nếu n chẵn và \(\left[\frac{n}{2}\right]+1\) điểm cùng màu nếu n lẻ
Trong mặt phẳng cho sáu điểm, trong đó không có ba điểm nào thẳng hàng. Mỗi đoạn thẳng nối từng cặp điểm được bôi màu đỏ hoặc xanh. Chứng minh rằng tồn tại ba điểm trong số sáu điểm đã cho, sao cho chúng là ba đỉnh của một tam giác mà các cạnh của nó được bôi cùng một màu.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
Xét điểm thứ nhất (A)(A) nối với 5 điểm còn lại (B,C,D,E,FB,C,D,E,F) tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn AB,AC,ADAB,AC,AD màu xanh tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành ΔABC,ABD,BCD,ABDΔABC,ABD,BCD,ABD có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.
Mỗi cạnh, mỗi đường chéo của một lục giác ABCDEF được tô bởi một trong hai màu: xanh hoặc đỏ. Chứng minh rằng luôn tồn tại một tam giác với ba đỉnh là ba đỉnh của đa giác và có ba cạnh cùng một màu.
giúp mình với (hơi khó đó , ai làm được mình sẽ tích luôn)
Trên mặt phẳng được tô bởi hai màu xanh ,đỏ khác nhau .Chứng tỏ rằng tồn tại một đoạn thẳng có độ dài 5 cm mà hai đầu mút của nó có cùng màu.
Cho 6 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Nối các điểm lại được các tam giác, mỗi đoạn thẳng được tô một trong hai màu xanh hoặc đỏ. Chứng tỏ rằng có một tam giác mà 3 cạnh của nó cùng màu
Cho 9 số tự nhiên bất kỳ , mỗi số được tô bởi một trong hai màu xanh hoặc đỏ một cách ngẫu nhiên . Chứng tỏ rằng tồn tại 4 số được tô cùng màu mà tổng của chúng chia hết cho 4 .
Cho 6 điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Nối các điểm lại được các tam giác, mỗi đoạn thẳng được tô một trong hai màu xanh hoặc đỏ. Chứng tỏ rằng có một tam giác mà 3 cạnh của nó cùng màu.
Xét điểm thứ nhất nối với 5 điểm còn lại () tạo thành 5 đoạn thẳng
Vì mỗi đoạn thẳng được tô chỉ màu đỏ hoặc xanh, nên theo nguyên lí Dirichlet có ít nhất ba trong năm đoạn nói trên cùng màu. Giả sử 3 đoạn cùng màu là đoạn AB,AC,AD có 2 trường hợp:
Đoạn màu xanh tạo thành có đỉnh thuộc cạnh màu xanh
Nếu ngược lại 3 đoạn màu đỏ thì tạo thành có đỉnh thuộc cạnh màu đỏ.
Vậy ta có điều phải chứng minh.