Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Huyền
Xem chi tiết
Fatasio
Xem chi tiết
Ngân Đặng Bảo
11 tháng 7 2018 lúc 9:38

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

NGUYỄN THỊ BÌNH
Xem chi tiết
Thuy Trang 5a
Xem chi tiết
ST
11 tháng 7 2018 lúc 17:28

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

Linh Ngô
Xem chi tiết
fadfadfad
Xem chi tiết
Nguyễn Thị Ngọc Hà
22 tháng 3 2017 lúc 11:14

Có : \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\) (1)

mà \(\left(a-b\right)^2>=0\)<=> \(a^2-2ab+b^2>=0\)<=> \(a^2+b^2>=2ab\)<=> \(\frac{a^2+b^2}{ab}>=2\)(2)

Từ (1) và (2) => \(\frac{a}{b}+\frac{b}{a}>=2\)

Đinh Đức Hùng
22 tháng 3 2017 lúc 12:06

Vì a;b > 0 . Áp dụng bđt AM - GM ta có :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\) 

Dấu "=" xảy ra <=> a = b

Nguyễn Huyền Trang
Xem chi tiết
Ngô Linh
Xem chi tiết
Lê Xuân Nguyên
Xem chi tiết