Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Minh
Xem chi tiết
Đậu Mạnh Dũng
Xem chi tiết
sakura
Xem chi tiết
Lê My
Xem chi tiết
đỗ ngọc ánh
22 tháng 10 2017 lúc 13:29

bạn ơi mình xin lỗi vì mình gửi cho bạn một số tin nhắn

không phải mình làm phiền bạn đâu nhé

Lê My
14 tháng 12 2017 lúc 12:18

i đầy mà

Edogawa Conan
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
19 tháng 9 2020 lúc 15:32

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

Khách vãng lai đã xóa
Trần Minh Thư
Xem chi tiết
Nguyễn Ngọc Anh Minh
31 tháng 10 2023 lúc 14:36

a/

\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)

\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)

 

\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)

\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)

b/

\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)

\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9

c/

\(3A=3^2+3^3+3^4+...+3^{121}\)

\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)

\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương

nguyen xuan thinh
Xem chi tiết
lê minh châu
11 tháng 12 2014 lúc 10:20

bài 1 

a,có

b,ko là chính phương

Đào Thị Minh Ngọc
Xem chi tiết
Phùng Ngô Ngọc Huy
26 tháng 9 2021 lúc 18:27

127^2; 999^2; 33^4;17^10;52^51

Khách vãng lai đã xóa
Member lỗi thời :>>...
26 tháng 9 2021 lúc 18:32

a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9

Ta có :

02 = 0 

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8

b) Vì 1262 có chữ số tận cùng là 6

=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )

Ta có 10012 có chữ số tận cùng là 1

=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )

Ta có 112 và 113 đều có chữ số tận cùng là 1 

=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )

Ta có 1010 có chữ số tận cùng là 0

=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )

Ta có 5151 có chữ số tận cùng là 1

=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )

Khách vãng lai đã xóa
Sakura Linh
Xem chi tiết
Nguyễn Thị Lan Anh
28 tháng 6 2017 lúc 10:34

a) 13 + 23

= 1 + 8 = 9

9 = 32

Tong tren la so chinh phuong

Y sau ban lam tuong tu nhe

leuleu