Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Hiếu
Xem chi tiết
Hà Quang Minh
12 tháng 8 2023 lúc 16:51

\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)

Hà Quang Minh
12 tháng 8 2023 lúc 16:53

\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)

Nguyễn Trọng Hiếu
12 tháng 8 2023 lúc 16:56

Mình cám ơn Hà Quang Minh rất nhiều

MinDory San
Xem chi tiết

ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc

CẢM ƠN

Tiến Dũng
Xem chi tiết
Lê Hoàng Nhật Anh
Xem chi tiết
hô nguyen kim hung
Xem chi tiết
mai mai la vay
24 tháng 1 2018 lúc 5:47

Theo đề bài, ta có:

-3\(\ge\)|a+1|+|b-2|

1\(\ge\)|a+1|+|b-2|

Do|a+1|\(\ge\)0

     |b-2| \(\ge\)0

=>|a+1|+|b-2|\(\ge\)0

=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1

Xét |a+1|+|b-2| = 0:

Vì |a+1|\(\ge\)0,|b-2|\(\ge\)0

Mà|a+1|+|b-2|=0

=> |a+1|=0 và |b-2|=0

=> a = -1 và b = 2

Xét |a+1|+|b-2|=1:

Vì|a+1|+|b-2|=1

nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0

Số nguyên a,b

|a+1|=0 và|b-2|=1

|a+1|=1 và |b-2|=0
số nguyên a=> a=-1a=0
số nguyên b=>b=3b=2

Vậy ta có các cặp a;b tương ứng:(a,b)\(\in\){(-1;2);(-1;3);(0;2)}

    

phạm văn tuấn
24 tháng 1 2018 lúc 6:09

Theo đề bài, ta có:

-3|a+1|+|b-2|

1|a+1|+|b-2|

Do|a+1|0

     |b-2| 0

=>|a+1|+|b-2|0

=> |a+1|+|b-2|=0 hoặc |a+1|+|b-2|=1

Xét |a+1|+|b-2| = 0:

Vì |a+1|0,|b-2|0

Mà|a+1|+|b-2|=0

=> |a+1|=0 và |b-2|=0

=> a = -1 và b = 2

Xét |a+1|+|b-2|=1:

Vì|a+1|+|b-2|=1

nên |a+1|=0 thì |b-2|=1 và nếu |a+1|=1 thì |b-2|=0

Số nguyên a,b

|a+1|=0 và|b-2|=1

|a+1|=1 và |b-2|=0
số nguyên a=> a=-1a=0
số nguyên b=>b=3b=2

Vậy ta có các cặp a;b tương ứng:(a,b){(-1;2);(-1;3);(0;2)}

yoyo2003ht
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Khách vãng lai đã xóa
Nguyễn Dương
Xem chi tiết
Nguyễn Tiến Dũng
3 tháng 5 2017 lúc 8:41

a.5/8;4/9;-6/15;7/-12

b.x\(\in\){2,3}

Long123
Xem chi tiết
Yuuki
Xem chi tiết