Tìm tất cả các số nguyên n để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
tìm tất cả các sô nguyên n để phân số 18n+3/21n+7 là phân số tối giản
Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
Ta có: \(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)
Do (3;7)=(6n+1;3n+1)=(3;3n+1)=1
=> Phân số có thể rút gọn khi 6n+1 chia hết cho 7
Mà 6n+1=7n-(n-1)
=> n-1 chia hết cho 7
=> n=7k+1 thì phân số có thể rút gọn
=> n=7k+2; 7k+3; 7k+4; 7k+6; 7k+6 thì phân số có thể rút gọn
bạn ơi cho mình kỉ cái dòng thứ 2 được không ạ?
mà sao 6n+1 lại bằng 3 ạ
Tìm tất cả các số \(\dfrac{18n+3}{21n+7}\) nguyên để phân số là phân số tối giản.
Tìm tất cả các số nguyên để phân số
\(\frac{18n+3}{21n+7}\) là phân số tối giản.
Tìm tất cả các số nguyên để phân số 18n+3/21n+7 là phân số tối giản.
Ta có:
\(\frac{18n+3}{21n+7}=\frac{3\left(6n+1\right)}{7\left(3n+1\right)}\)
Nhận thấy 3 và 7 ; 3 và 3n+1 ; 6n+1 và 3n+1 đều là nguyên tố cùng nhau
Để A tối giản
=>6n+1 không chia hết cho 7
=>\(n\ne1\)
Vậy để A tối gainr thì n khác 0 và n thuộc Z
tìm tất cả các số nguyên n để phân số 18n + 3 / 21n + 7 là phân số tối giản
Gọi ƯCLN(18n + 3) và (21n + 7) là d
Ta có : 18n + 3 chia hết cho d \(\Rightarrow\)3n + 4 chia hết cho d \(\Rightarrow\) 21n + 28
Ta có : 21n + 28 - 21n + 7 \(\Rightarrow\) 21 chia hết cho d
\(\Rightarrow\) d \(\in\) { 3 ; 7 ;21 }
\(\Rightarrow\) n khác 7a +1
tìm tất cả các số nguyên n để phân số 18n + 3 / 21n + 7 là phân số tối giản
Gọi ƯCLN (18n+3) và (21n+7) là d
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28
Ta có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21)
=>n khác 7a+1
Gọi ƯCLN (18n+3) và (21n+7) là d
Ta có:18n+3 chia hết cho d=>3n+4 chia hết cho d=>21n+28
Ta có:21n28-21n+7=>21 chia hết cho d =>d thuộc(3,7,21)
=>n khác 7a+1
Tìm tất cả các số nguyên n để
\(\frac{18n+3}{21n+7}\) là phân số tối giản
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
1)Tìm tất cả các số nguyên n để p/số \(\frac{18n+3}{21n+7}\) là phân số tối giản