Cho tg abc. Kẻ ah vuông góc với bc. Cho biết ab=13cm ah=12cm hc = 16 cm
Hỏi tg abc là tg gì
Cho tg abc . Kẻ ah vuông góc với bc. Biết ab =13cm ạh =12 cm hc=16cm
a) tính độ dài các đoạn thẳng ac,bc
b)tam giác abc la tg gì ? Vì sao?
cho tam giác ABC, góc A=90, đường cao AH, AC=30cm, AH=24cm.
a) chứng minh tg ABC đồng dạng tg HAC
b) tính độ dài đoạn thảng HC,BC,AB
c) kẻ HM vuông góc vs AB (M thuộc AB), HN vg góc vs AC(N thuộc AC). Chứng minh tg AMN đồng dạng tg ACB
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
c) Xét ΔAHM vuông tại M và ΔABH vuông tại H có
\(\widehat{HAM}\) chung
Do đó: ΔAHM\(\sim\)ΔABH(g-g)
Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AM\cdot AB\)(1)
Xét ΔAHN vuông tại N và ΔACH vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔAHN\(\sim\)ΔACH(g-g)
Suy ra: \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AN\cdot AC\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt)
Do đó: ΔAMN\(\sim\)ΔACB(c-g-c)
Cho tam giác ABC. Kẻ AH vuông góc với BC (H thuộc BC).Cho biết AB = 13cm,AH =12cm,HC =16 cm. Tính các độ dài AC ,BC.
AC^2=AH^2+HC^2(py ta go)
AC^2=144+256=200 cm
suy ra AC=20 cm
AB^2=AH^2+BH^2
BH^2=AB^2-AH^2
BH^2=1169-144=25cm
BH=5cm
Mà BH+HC=BC suy ra 5+16=21
vạy AC=20 cm, BC=21cm
Cho tam giác ABC ( AB < AC). Vẽ đường cao AH. Kẻ HE vuông góc với AB và HF vuông góc với AC ( E thuộc AB, F thuộc AC)
a) TG AEH dd TG AHB
b) AE.AB=AH^2 VÀ AE.AB = AF.AC
c) TG AFE dd TG ABC
d) MB.MC = ME.MF ( Biết đường thẳng EF cắt đường thẳng BC tại M )
cứu mik phần d vs mn ơiiiiii
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
=> ΔAEH đồng dạng với ΔAHB
b: ΔAHB vuông tại H có HE vuông góc AB
nên AH^2=AE*AB
ΔAHC vuông tại H
mà HF là đường cao
nên AF*AC=AH^2=AE*AB
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=> ΔAEF đồng dạng với ΔACB
d: Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=> ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME*MF=MB*MC
Cho tg ABC có M là trung điểm của BC. Từ A kẻ AH vuông góc với BC. Biết AH và AM chia Góc BAC thành 3 góc bằng nhau. Chứng minh:
a, Tg ABC vuông tại A
b, Tg AMC cân
c, Tg ABM đều
Tam giác ABC vuông Tại A ,AC>AB .kẻ AH vuông góc vs BC trên HC lấy D sao choHD=HB .KẺ CEvuông góc vs AD. c/m
a . tg ABD CÂN
b. gọi K là giao điểm của AH và CE .c/m KD//AB
c. tìm điều kiện của tg ABC để tg AKD đều
cho tg ABC cân tại A , AB>BC . Kẻ AH vuông góc với BC . a) CM: tg AHB = tg AHC , H là trung điểm của BC . b) Gọi M là trung diểm của AB . Qua A kẻ đường thẳng // với BC cắt tia HM tại D . Giả sử AB = 6,5cm , AD = 2,5 cm . CM : AD = BH . Tính Ah . c) CD cắt AB tại V . CM: BC<3AV
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
tg ABC vg tại A. AH vuông góc BC , lấy D thuộc HC sao cho HD=HB. Kẻ CE vgoc AD tại E
a, Biết AB=30cm AC=40cm. Tính HB
b, Cm AB.EC=AC.ED
c, Tính diện tích tg CDE
Cho tg ABC vuông tại A ( AB<AC ) có đường cao AH.
a/ Chứng minh tg ABC đồng dạng tg HBA.
b/ Cho HB=9cm, HC=16cm. Tính BC, AB, AH.
c/ Vẽ BS là đưuòng phân giác trong của tg ABC, BS cắt AH tại I. Chứng minh: BI.BA=BH.BS
d/ Trên tia đối AH lấy điểm M, vẽ tia Cx vuông góc MB tại K. Lấy E trên tia Cx sao cho BE=BA. Chứng minh tg BEM vuông.