Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chí bảo
Xem chi tiết
Bích Ngọc
Xem chi tiết
Thu Thao
18 tháng 5 2021 lúc 10:02

undefined

Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 10:03

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{ACH}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)

hay HC=18(cm)

Ta có: ΔABC∼ΔHAC(cmt)

nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)

Vậy: HC=18cm; AB=40cm; BC=50cm

 

Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 10:06

c) Xét ΔAHM vuông tại M và ΔABH vuông tại H có 

\(\widehat{HAM}\) chung

Do đó: ΔAHM\(\sim\)ΔABH(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=AM\cdot AB\)(1)

Xét ΔAHN vuông tại N và ΔACH vuông tại H có 

\(\widehat{NAH}\) chung

Do đó: ΔAHN\(\sim\)ΔACH(g-g)

Suy ra: \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=AN\cdot AC\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt)

Do đó: ΔAMN\(\sim\)ΔACB(c-g-c)

Hoang Ngoc Nhi
Xem chi tiết
Nguyễn Lê Trình
6 tháng 11 2017 lúc 6:20

AC^2=AH^2+HC^2(py ta go)

AC^2=144+256=200 cm

suy ra AC=20 cm

AB^2=AH^2+BH^2

BH^2=AB^2-AH^2

BH^2=1169-144=25cm

BH=5cm

Mà BH+HC=BC suy ra 5+16=21

vạy AC=20 cm, BC=21cm

OoO_Nhok_Nghịch_Ngợm_OoO
6 tháng 11 2017 lúc 6:42

AC = 20

BC = 21

k cho mk nha

ha xuan duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 20:09

a: Xét  ΔAEH vuông tại E và  ΔAHB vuông tại H có

góc EAH chung

=> ΔAEH đồng dạng với  ΔAHB

b:  ΔAHB vuông tại H có HE vuông góc AB

nên AH^2=AE*AB

 ΔAHC vuông tại H

mà HF là đường cao

nên AF*AC=AH^2=AE*AB

c: AE*AB=AF*AC

=>AE/AC=AF/AB

=> ΔAEF đồng dạng với  ΔACB

d: Xét  ΔMEB và  ΔMCF có

góc MEB=góc MCF

góc M chung

=> ΔMEB đồng dạng với  ΔMCF

=>ME/MC=MB/MF

=>ME*MF=MB*MC

Chế Bá Đạo
Xem chi tiết
Phạm Huyền Trang
Xem chi tiết
Vũ Tuấn Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 15:29

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

xan xan
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 19:33

loading...  loading...  

Hương Thanh
Xem chi tiết