CMR với mọi số nguyên m thì \(4m^3+9m^2-19m-30\)chia hết cho 6
Chứng minh rằng với mọi số nguyên m thì 4m^3+9m^2-19m-30 chia hết cho 6
Nhanh lên mai mình nộp rùi
a) CMR với mọi số nguyên m thì 4m3 + 9m2 - 19m - 30 chia hết cho 6.
b) CMR n3 + 3n2 - n - 3 chia hết cho 48 với mọi n là số nguyên lẻ.
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
chung minh rang voi moi so nguyen m thi 4m^3 + 9m^2 - 19m - 30 chia het cho 6
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
\(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.\(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).\(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
Cho m là số nguyên.Chứng minh 4m^3+9m^2-19m-30 chia hết cho 6
Mình giải được đến đâ rôi sao nữa vậy?
4m^3+9m^2-19m-30=4m^3+4m^2-24m+5m^2+5m^2-30
=4m(m^2+m-6)+5(m^2+m-6)
=(4m+5)(m^2+3m-2m-6)
=(4m+5)(m^2-2m+3m-6)
=(4m+5)(m(m-2)+3(m-2))
=(4m+5)(m+3)(m-2)
Nếu m có dạng 3k thì m+3 chia hết cho 3, nếu m có dạng 3k-1 thì m-2 chia hết cho 3
CMR với mọi số nguyên thì: 4n^3+9n^2-19n-30 chia hết cho 6
cmr: với m là số nguyên thì
a, \(m^3-n\)chia hết cho 6
b,\(m^{3+}5m\)và \(m^3-19m\)cũng luôn chia hết cho 8
a/ \(m^3-m=m\left(m^2-1\right)=m\left(m-1\right)\left(m+1\right)\)
Đây là 3 số nguyên liên tiếp nên chia hết cho 6
cmr với mọi số nguyên n thì 4n3+9n2-19n-30 chia hết cho 6
CMR với mọi số nguyên m thì m3 - m luôn chia hết cho 6.
m^3 - m = (m^2-1)m = (m-1)(m+1)m là tích 3 stn liên tiếp -> chia hết cho 6
CMR với mọi a thuộc số nguyên thì :
a, a3-7a chia hết cho 6
b, a2016-a2014chia hết cho 6
c, \(\frac{a^3}{6}+\frac{a^2}{2}+\frac{a}{3}\)thuộc số nguyên
d, a5-a chia hết cho 30
e, an+5-an+1 chia hết cho 30 (n thuộc số nguyên)