cho a=(2n+1)(3n+2). cho a là scp cm (2n+1) và (3n+2) là scp
Tìm n có 2 cs để 2n+1 và 3n+1 là scp
10 ≤ n ≤ 99 => 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
=> n ∈{12;24;40;60;84}
=> 3n+1∈{37;73;121;181;253}
=> n = 40
Tìm stn n có 2 chữ số biết 2n+1 và 3n+1 đều là các scp
2n+1 là số chính phương lẻ
=> 2n+1 chia 8 dư 1
=> 2n ⋮ 8 => n ⋮ 4
=> 3n+1 cũng là số chính phương lẻ
=> 3n+1 chia 8 dư 1
=> 3n ⋮ 8
=> n ⋮ 8 (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n ⋮ 5(2)
Từ (1) và (2)⟹n⋮40
n là số tự nhiên có 2 chữ số => n = 40 (thoả mãn ) hoặc n = 80 ( loại do 2n+1 không là số chính phương)
Cách 2 đơn giản hơn:
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
Tìm n thuộc N để 2n+1 , 3n+1 là các SCP còn 2n+9 là số nguyên tố
Tìm n thuộc N* sao cho:
2n+3 và 3n+14 đều là SCP.
+) Tìm dư của phép chia đa thức x2022-x2021+2020 cho đa thức x2-1
+) CMR: Với mọi n∈N và 2n+3; 3n+1 đều là SCP thì n⋮40
+) Cho biểu thức \(M=\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}\)
CMR: Nếu M=1 thì 2 trong 3 phân thức đã cho của biểu thức M bằng 0, phân thức còn lại bằng 1.
Tìm n thuộc N* sao cho:
2n+3 và 3n+14 đều là SCP.
Cho A= n6-n4+2n3+2n2 với ( n thuộc N và n>1)
CMR: A không phải là SCP
ta có
\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta có
\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)
Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)
Từ (1) và (2)
=>\(\left(n-1\right)^2
1.cmr mỗi số sau là scp:
a,A=99...9900....0025
n cs 9 n cs 0
b,B=99...99800..001
n cs 9 n cs 0
c,C=44...4488...89
n cs 4 n-1 cs 8
d,D=11..1122...225
n cs 1 n+1 cs 2
2.Cho N là tổng 2 scp, cmr:
a,2N cũng là tổng 2 scp
b,N2 cũng là tổng 2 scp
vi n la stn co 2 c/s
⇒ 10≤n≤99
⇒ 20≤2n≤198
⇒ 21≤2n+1≤199
ma 2n+1 la scp
2n+1ϵ 25;49;81;121;169
ta co bang
2n+1 25 49 81 169
n 12 24 40 84
3n+1 37 73 121=112 153
kl L C C L
bài 1:tìm hai số tự nhiên a và b (a > b) có BCNN bằng 240 và UCLN bằng 12
a) tìm ƯCLN ( 3n+1,4n+1) và chứng tỏ 3n+1 và 4n +1 là số nguyên tố cùng nhau
bài 2 : cho M= 5+5^2+5^3+...+5^80
a) Chứng minh 4m+5 chia hết 5^80
b) M không là SCP