Tính các tổng sau:
a)S=1-2+3-4+...+2019-2020
b)P=0-2+4-6+...+2016-2018
Ai nhanh nhất mink tick!!!
Tính các tổng sau :
a) S= 1-2+3-4+...+2019-2020
b) P = 0-2+4-6+...+2016-2018
Làm giúp mình nhé ! đg cần
a. S =1-2+3-4+...+2019-2020
S= (-1)+(-1)+...+(-1)/1010 số hạng
S=(-1). 1010
S=-1010
b.P= 0-2+4-6+...+2016-2018
P=(-2)+(-2)+...+(-2)/1010 số hạng
P=(-2).1010
P=-2020
S=2+(-3)+4+(-5)+......+2015+(-2016)+2017+(-2018)+2019
Ai nhanh nhất mình tick cho
S = (2 +2019) + [(-3) + (-2018)] + ... + 1010 + 1011
S = 1 + (-1) + (-1) +... + 2021
S = 0 + 2021
S = 2021
S=2+(-3)+4+(-5)+......+2015+(-2016)+2017+(-2018)+2019 ( có 2019 số hạng )
S = - 1 + ( - 1 ) + ............ + ( - 1 ) + 2019 ( có 1009 số - 1 )
S = - 1 . 1009 + 2019
S = - 1009 + 2019
S = 1010
Tính tổng
S= 2+(-3)+4+(-5)+6+(-7)+............ + 2016+(-2017)+2018+(-2019)+2020
S= 2+(-3)+4+(-5)+6+(-7)+............ + 2016+(-2017)+2018+(-2019)+2020
S=[2+(-3)]+[4+(-5)]+[6+(-7)]+...+[2016+(-2017)]+[2018+(-2019)]+2020
S=-1+(-1)+(-1)+...+(-1)+2020 (Có 1009,5 số -1 )
S=-1.1009,5+2020
S=-1009,5+2020
S=1010,5
Tính A/B biết
A= 1/2+1/3+1/4+.....+1/2019
B = 2016/1+2015/2+2014/3+....+1/2016
Ai nhanh mik cho 3 tick
Tính tổng: S = 2020 + 2019 – 2018 – 2017 + 2016 + 2015 – 2014 – 2013 + … + 4 + 3 – 2 – 1 . Vậy S = .................
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
S= 2020
Bạn huyền đúng rồi đó .
hok tốt
Tính S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 2016 + 2017 - 2018 - 2019 + 2020
S=(1-2-3+4)+(5-6-7+8)+........+(2013-2014-2015+2016)+(2017-2018-2019+2020)
=0+0+0+.......+0+0=0
Tính nhanh :
1+2+3+4+5+6+7+8+9 .
Ai tick mink mink tick lại nhớ kb luôn nha
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
= ( 1 + 9 ) + ( 2 + 8 ) + ( 3 + 7 ) + ( 4 + 6 ) + 5
= 10 + 10 + 10 + 10 + 5
= 45
1.Tính nhanh tổng sau:
\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
2. So sánh A và B, biết:
\(A=\frac{2016^{2017}}{2016^{2017}-3}\)
\(B=\frac{2017^{2019}+1}{2017^{2019}-1}\)
1. Bài giải:
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)
\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)
Vậy \(A=\frac{1001}{501}\)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]