Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Nguyễn Đức
Xem chi tiết
pham trung thanh
10 tháng 10 2017 lúc 19:02

\(2x^6+y^2-2x^3y=320\)

\(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

\(\Rightarrow x^6\le320\)

\(x\in Z\)

\(\Rightarrow x^6=64;1;0\)

Xét từng trường hợp, bạn tìm ra được\(x^6=64\)thõa mãn

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+ x=2

=>y=-8;24

+x=-2

=>y=8;-24

Vậy\(\left(x;y\right)=\left(2;-8\right);\left(2;24\right);\left(-2;8\right);\left(-2;-24\right)\)

Hồ Minh Thành
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Trần Anh
13 tháng 8 2018 lúc 9:16

\(2x^6+y^2-2x^3y=320\)  \(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)\(\Leftrightarrow\) \(\left(x^3\right)^2+\left(x^3-y\right)^2=320\)

Vì \(\left(x^3\right)^2\ge0\)và  \(\left(x^3-y\right)^2\ge0\). Đồng thời \(\left(x^3\right)^2\)và  \(\left(x^3-y\right)^2\)cũng là hai số chính phương nên :

(  phân tích 320 thành tổng của 2 số chính phương ) 

\(\left(x^3\right)^2+\left(x^3-y\right)^2=8^2+16^2\) ( Do \(\sqrt[3]{16}\)không là 1 số nguyên nên \(x^3=8\))

Vậy ta có 4 trường hợp : 

+) Trường hợp 1: 

\(\hept{\begin{cases}\left(x^3\right)^2=8^2\\\left(x^3-y\right)^2=16^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-8\end{cases}}}\)( TM )

+) Trường hợp 2:

\(\hept{\begin{cases}x^3=8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=24\end{cases}}\left(TM\right)}\)

+) Trường hợp 3:

\(\hept{\begin{cases}x^3=-8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-24\end{cases}\left(TM\right)}}\)

+) Trường hợp 4 :

\(\hept{\begin{cases}x^3=-8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}\left(TM\right)}}\)

Vậy phương trình có 4 cặp nghiệm (x;y) nguyên là (-2;8)  ,   (-2;-24 )   ,   (2;-8)    ;   ( 2; 24 )

aaaaaaaa
Xem chi tiết
long kỵ
Xem chi tiết
Rebellion Yuto
Xem chi tiết
Mr Lazy
10 tháng 8 2015 lúc 21:47

\(pt\Rightarrow x=\frac{11-3y}{2}=5-y+\frac{1-y}{2}\)

Do \(x\in Z\) nên \(\frac{1-y}{2}\in Z\)

Đặt \(\frac{1-y}{2}=t\in Z\Rightarrow y=1-2t\)

\(\Rightarrow x=5-\left(1-2t\right)+t=3t+4\)

Vậy \(\left(x;y\right)=\left(3t+4;1-2t\right)\text{ với }t\in Z.\)

Trần Lệ Quyên
Xem chi tiết
Trần Thị Loan
22 tháng 7 2015 lúc 10:46

<=> 2.(x2 + 2x +1) + 3.y2 = 21

<=> 2.(x+1)2 + 3. y2 = 21

Vì 3y2; 21 đều chia hết cho 3 nên 2.(x +1)2 chia hết cho 3 . hơn nữa 2. (x +1)2 \(\le\) 21 và (x+1)2 là số chính phương

=> (x+1)2 =0 hoặc  9 

+) x + 1 = 0 => x = -1 => y 2 = 7 => loại

+) (x+1)= 9 => y= 1

=> x+ 1 = 3 hoặc x+ 1=- 3 => x = 2 hoặc x = -4

y2 = 1 => y = 1 hoặc y = -1

Vậy....

Nguyễn Anh Dũng An
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 9:45

\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)

y nguyên => y = -1; 0; 1

y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)

y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)

vậy pt có nghiệm (x;y) = (0;0)  (4;0)  (2;1)

Hoàng Yến
Xem chi tiết
giang ho dai ca
21 tháng 5 2015 lúc 19:05

\(\Leftrightarrow4x^2+8x+4=42-6y^2\)

\(\Rightarrow\left(2x+2\right)^2=6\left(7-y^2\right)\)

Vì \(\left(2x+2\right)^2\ge0\)  \(\Rightarrow7-y^2\ge0\)\(\Rightarrow y^2\le7\)

Mà \(y\in Z\)  \(\Rightarrow y=0\); +-1 ; +-2 \(\Rightarrow\) các gt tương ứng của x

đúng nha

bài này cũng dễ

Nguyễn Ngô Minh Trí
3 tháng 11 2017 lúc 17:18

cảm ơn bạn đã giúp 

thanks

k tui nha

Cao Phạm Thùy Linh
15 tháng 11 2017 lúc 21:15

cách giải hay, tks bạn!!