CHo tam giác ABC , điểm P bất kì nằm trong tam giác . Kẻ PA' , PB' , PC' vuông góc BC , CA , AB
Xác định vị trí điểm P sao cho BC/PA' + CA/PB' + AB/PC' min
Cho Tam giác ABC và điểm P nằm trong tam giác.Chứng minh rằng:
\(\frac{AB+BC+CA}{2}\)<PA+PB+PC<AB+BC+CA
cho tam giác đều abc.Lấy điểm p bất kì trong tam giác.Chứng minh rằng pa pb và pc là độ dài 3 cạnh tam giáccho tam giác đều abc.Lấy điểm p bất kì trong tam giác.Chứng minh rằng pa pb và pc là độ dài 3 cạnh tam giác
Bài 4. Cho tam giác ABC vuông tại A. P là điểm nằm ngoài tam giác sao cho PB vuông góc với BC và PB = BC. Gọi D là điểm trên tia PA sao cho CD vuông góc PA. E là điểm trên tia CD sao cho BE vuông góc AB. Chứng minh rằng AE là phân giác góc BAC.
Đây sẽ là câu hỏi khó nhất trong năm
Cho Tam giác ABC và điểm P nằm trong tam giác, chứng minh rằng :
\(\frac{AB+BC+CA}{2}\) < PA + PB + PC < AB + BC +CA
5 người trả lời được câu hỏi này đầu tiên sẽ được mk tick.
Cho tam giác ABC và điểm O trong tam giác. Các đường thẳng AO.,BO,CO lần lượt cắt BC,CA,AB tại M, N,P. Tính giá trị của biểu thức : a, PA/PB × MB/MC × NC/NA b, PO/PC+MO/MA+NO/NB."""Dùng phương pháp diện tích
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau: a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB) Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC) AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC) PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1 b)PO/PC= S(AOP)/ S(APC) MO/MA= S(CMO)/ S(CAM) NO/NB= S(ANO)/ ABN) Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)
Cho tam giác ABC và điểm O trong tam giác. Các đường thẳng AO.,BO,CO lần lượt cắt BC,CA,AB tại M, N,P. Tính giá trị của biểu thức :
a, PA/PB × MB/MC × NC/NA
b, PO/PC+MO/MA+NO/NB."""Dùng phương pháp diện tích.
Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau:
a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB)
Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC)
AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC)
PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1
b)PO/PC= S(AOP)/ S(APC)
MO/MA= S(CMO)/ S(CAM)
NO/NB= S(ANO)/ ABN)
Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)
cho tam giác ABC nhọn, M,N,P lần lượt là trung điểm AB,AC,BC. Từ M vẽ MC' vuông góc AB và MC'=AM=BM, từ N vẽ NB' vuông góc AC và NB'=NA=NC, từ P vẽ PA' vuông góc BC và PA'=PB=PC. chung minh B'C'=AA'.
giai giup nha
Cho tam giác ABC, lấy điểm P trong tam giác ABC thỏa mãn PB=PC<PA. Gọi (O1), (O2), (O3) lần lượt là đường tròn nội tiếp các tam giác BPC, APC, APB và lần lượt tiếp xúc với BC,CA,AB tại M,N,P. Dựng hình bình hành MNQP. Chứng minh AQ là phân giác góc BAC.
Gọi R,S lần lượt là điểm đối xứng với C,B qua N,P. Lấy Q' là trung điểm của RS.
Ta có: \(AR=CA-CR=CA-2.\frac{CA+CP-AP}{2}=AP-CP\)
Tương tự \(AS=AP-BP\). Vì \(BP=CP< PA\) nên \(AR=AS\)
Suy ra AQ' là trung tuyến của \(\Delta\)RAS và cũng là đường phân giác \(\widehat{BAC}\)
Mặt khác tam giác BPC cân tại P có đường tròn nội tiếp tiếp xúc với BC tại M, suy ra M là trung điểm BC
Theo tính chất đường trung bình thì tứ giác MNQ'P là hình bình hành
Do vậy Q' trùng với Q. Mà AQ' là phân giác góc BAC nên AQ là phân giác góc BAC.
Sửa cả đề và trong bài giải luôn: Thay điểm P nằm trong tam giác thành P', tránh trùng với điểm P trên cạnh AB.
Cho tam giác đều ABC và điểm P nằm trong tam giác, sao cho PC = 3, PA = 4 và PB = 5. Tìm chu vi của tam giác ABC ?