Tìm các số tự nhiên a và b để \(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)với a, b khác 0
1.Tìm phân số \(\frac{a}{b}\)biết rằng nếu cộng thêm cùng một số khác 0 vào tử và vào mẫu của phân số thì giá trị phân số đó không đổi.
2. Tìm 2 phân số tối giản. Biết hiệu của chúng là\(\frac{3}{196}\)và các tử tỉ lệ với 3; 5 và các mẫu tỉ lệ với 4; 7.
3. Tìm một số có 3 chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.
Bài 1: Ba phân số tối giản có tổng bằng \(\frac{213}{70}\)các tử của chúng có tỉ lệ vs 3;4;5, các mẫu của chúng tỉ lệ vs 5;1;2.
Tìm 3 phân số đó
Bài 2: Tìm số tự nhiên n có hai chữ số biết rằng 2 số 2n+1 và 3n+1 đồng thời là số chính phương.
Bài 3: Tìm 3 số tự nhiên a;b;c biết \(\frac{3a\:-\:2b}{5}=\frac{2c\:\:-\:5a}{3}=\frac{5b\:-\:3c}{2}\)và a + b + c = -50
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
bài 2
Giải:
Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)
10≤n≤99⇒21≤2n+1≤19910≤n≤99⇒21≤2n+1≤199
⇒21≤a2≤199⇒21≤a2≤199
Mà 2n + 1 lẻ
⇒2n+1=a2∈{25;49;81;121;169}⇒2n+1=a2∈{25;49;81;121;169}
⇒n∈{12;24;40;60;84}⇒n∈{12;24;40;60;84}
⇒3n+1∈{37;73;121;181;253}⇒3n+1∈{37;73;121;181;253}
Mà 3n + 1 là số chính phương
⇒3n+1=121⇒n=40⇒3n+1=121⇒n=40
Vậy n = 40
Cho \(A=\frac{9n+29}{3n+4}\)
a)Tìm số nguyên n để A là số tự nhiên
b)Tìm số tự nhiên n để A là phân số tối giản.
c)Với giá trị nào của n trong khoảng từ 15 đến 26 thì A rút gọn được
Cho 4 chữ số a,b,c,d khác nhau và khác 0. Lập số tự nhiên lớn nhất và số tự nhiên nhỏ nhất có bốn chữ số gồm cả bốn chữ số ấy. Tổng của hay số này bằng 11330. Tìm tổng các chữ số a+b+c+d.
Giả sử a > b > c > d
Khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là cdba
\(\Rightarrow\)abcd + dcba = 11330
Suy ra ta có a + d = 10 và b + c = 12
Vậy a + b + c + d = 10 + 12 = 22
Cho 4 chữ số a,b,c,d khác nhau và khác 0. Lập số tự nhiên lớn nhất và số tự nhiên nhỏ nhất có bốn chữ số gồm cả bốn chữ số ấy. Tổng của hai số này bằng 11330. Tìm tổng các chữ số a+b+c+d.
1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)
2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)
3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)
4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)
7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên
8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)
a) Tìm số nguyên \(n\)để \(A\)là phân số
b) Tìm số nguyên \(n\)để \(A\)là số nguyên
9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên
10. Tìm tập hợp các số nguyên \(a\)là bội của 3:
\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)
tìm phân số nhỏ nhất khác 0, sao cho các nhân số với các phân số \(\frac{2}{3}\),\(\frac{4}{5}\), \(\frac{6}{7}\) được kết quả là số tự nhiên.
MN CHỈ GIÚP EM BÀI NÀY VỚI Ạ!! EM ĐANG CẦN GẤP
EM CẢM ƠN
Cho số tự nhiên n = 5a + 4b ( a, b ϵ N ). Tìm các số a và b để:
a) n chia hết cho 2
b) n chia hết cho 5
c) n chia hết cho 10
Tham khảo nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
THAM KHẢO nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
Tìm số tự nhiên có 4 chữ số abcd với a khác 0,b khác 0 biết abcd — 2. bcd = ac
Lưu ý các chữ số abcd đều có dấu gạch đầu
abcd-2bcd=ac
1000a+100b+10c+d-2(100b+10c+d)=10a+c
1000a+100b+10c+d-200b-20c-2d=10a+c
1000a-100b-10c-d=10a+c
=>1000a-(10a+c)=100b+10c+d
1000a-10a-c=100b+10c+d
990a-c=100b+10c+d
990a=100b+9c+d
giá trị lớn nhất của 100b+9c+d=900+81+9=990
=>990a=990
=>a=1
=>b=9 c=9 d-9
=>abcd=1999
ko tin thì thử đi đúng 100%!