C minh
(x^2 + 1)^4 + 9(x^2 + 1)^3 + 21(x^2 + 1)^2 - x^2 - 31 luôn không âm
Cho A= (x^2+1)^4+ 9(x^2+1)^3+ 21(x^2+1)^2- x^2-31. Chứng minh rằng A luôn luôn không âm với mọi giá trị của biến.
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
Ta thấy \(x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)
\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(\ge1^4+9.1^4+20.1^2+0-30=0\)
\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)
Vậy A luôn không âm với mọi giá trị của biến.
Chứng minh rằng :
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-31\)
Luôn luôn không âm với mọi giá trị của x
Đặt x2+1=a(a\(\ge1\))
=> A= a4+9a3+21a2-a-30
=(a-1)(a3+10a2+31a+30)
Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)
=> A\(\ge0\)(ĐPCM)
Chứng tỏ rằng đa thức:
A=(x^2+1)^4+9(x^2+1)^3+21(x^2+1)^2-x^2-31 luôn không âm với mọi x
Ta có
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30
Trong đó với mọi x:
x^2+1>=1,
(x^2+1)^3>=1,
21(x^2+1)^2>=21,
9(x^2+1)>=9
Nên
(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]>=30
Tương đương
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30>=0 (đpcm)
Cho biểu thức A= ( x2 +1 )4 +9( x2 +1 )3 + 21( x2 +1 )2 - x2 -31. CMR : A luôn không âm với mọi x
Chứng tỏ rằng đa thức
\(A=\left(x^2+1\right)^4+9.\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-41\)
luôn luôn không âm với mọi giá trị của x
A= x^8+4x^6+6x^4+4x^2+1+9x^6+27x^4+27x^2+9+21x^4+42x^2+21-x^2-41
=x^8+13x^6+54x^4+72x^2-10
mọi mũ đều là chẵn
đfcm :))
Đề sai nhé bạn nếu x =0 thì giá trị này nhận kq -10 đấy
chứng minh rằng A= (x2+1)2+9(x2+1)2+21(x2+1)2-x2-31 luông không âm với mọi x
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
cái gì thế này???????????????????????????????????
mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý
CHO P = \(\frac{X^4+X^3+X+1}{X^4-X^3+2X^2-X+1}\)
RÚT GỌN P VÀ CHỨNG MINH RẰNG P LUÔN LUÔN KHÔNG ÂM VỚI MỌI GIÁ TRỊ CỦA X
Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
Nên mẫu số luôn luôn khác 0
Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)
\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x
Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)