a) Tìm GTLN của A = 2013 - /3-y/ - ( x-y) \(^2\)
b) Tìm GTNN của B= -9 + X\(^2\)+ / 2Y-6/
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Cho x,,y thỏa mãn 4x2+2y2-4xy+4x+8y+9=0
a Tìm y để x đạt GTNN,GTLN
b Tìm x,y để 2x-y đạt GTNN,GTLN
Cho 4x^2+9y^2=9. Tìm giá trị của biến x, y để A= x-2y+3 đạt GTNN, GTLN
\(\left\{{}\begin{matrix}4x^2+9y^2=9\\A=x-2y+3\end{matrix}\right.\)
Áp dụng bất đẳng thức Bunhiacopxki cho các cặp số \(\left(\dfrac{1}{2};2x\right);\left(-\dfrac{2}{3};3y\right)\)
\(x-2y=\dfrac{1}{2}.x+\left(-\dfrac{2}{3}\right).3y\)
\(\Rightarrow\left[\dfrac{1}{2}.2x+\left(-\dfrac{2}{3}\right).3y\right]^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=\dfrac{25}{36}.9\)
\(\Rightarrow x-2y\le\dfrac{5}{6}.3=\dfrac{5}{2}\)
\(\Rightarrow A=x-2y+3\le\dfrac{5}{2}+3\)
\(\Rightarrow A=x-2y+3\le\dfrac{11}{2}\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{\dfrac{1}{2}}{2x}=\dfrac{-\dfrac{2}{3}}{3y}\)
\(\Rightarrow\dfrac{2x}{\dfrac{1}{2}}=\dfrac{3y}{-\dfrac{2}{3}}\)
\(\Rightarrow\dfrac{4x^2}{\dfrac{1}{4}}=\dfrac{9y^2}{\dfrac{4}{9}}=\dfrac{4x^2+9y^2}{\dfrac{1}{4}+\dfrac{4}{9}}=\dfrac{9}{\dfrac{25}{36}}=\dfrac{9.36}{25}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{9.36}{25}.\dfrac{1}{16}\\y^2=\dfrac{9.36}{25}.\dfrac{4}{36}=\dfrac{9.4}{25}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.6}{5}.\dfrac{1}{4}=\dfrac{9}{10}\\y=\dfrac{3.2}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy \(GTLN\left(A\right)=\dfrac{11}{2}\left(tạix=\dfrac{9}{10};y=\dfrac{6}{5}\right)\)
a) Cho a,b thỏa mãn a + 2b = 1
Tìm GTLN của: 2011 . a^2 + 2ab + 2008 . 2011
b) Cho x,y thỏa mãn x^2 + 2xy + 6x + 6y + 2y^2 + 8 = 0
Tìm GTLN và GTNN của: B = x + y + 2016
B1: cho x-2y=2. tìm GTNN của Q= \(x^2+2y^2-x+3y\)
B2: a) tìm GTLN của P=\(x^2+y^2+xy+x+y\)
b) tìm GTLN của Q=\(-5x^2-2xy-2y^2+14x+10y-1\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
bài 1:CHo x,y,z dương thỏa mãn : 0 <= x<= 4<=y<=z<=7 và x+y+z=15.Tìm GTLN của p=xyz
bài 2: Cho a,b là 2 số tự nhiên khác 0 và a+b=n.Tìm GTLN,GTNN của Q=ab
bài 3: Tìm x,y thuộc z biết 5x^2 +2y^2 +10x + 4y =6
tìm GTLN , GTNN của các bài tập sau ( x , y thuộc z )
a) A = | x - 3 | + 1
b ) B = | 6 - 2x | - 5
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
a) A = | x - 3 | + 1
| x - 3 |\(\ge\)0
Nên | x - 3 |+1\(\ge\)1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |\(\ge\)0
Nên |6-2x|-5\(\ge\)-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2\(\ge\)0
Nên -( x + 1 ) 2\(\le\)0
Vì |2y - y |\(\ge\)0
Nên - |2y - y |\(\le\)0
C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 \(\ge\)0
(2y - 6 )2 \(\ge\)0
D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1
Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)