Cho tam giác ABC vuông tại A, có góc C=60độ. kẻ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD=HA
a. CMR: tam giác ABD đều.
b. Từ D kẻ đường thẳng song song với AB cắt BC tại M. CMR:tam giác ADM đều
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy D sao cho HA=HD
a) chứng minh: tam giác AHC=tam giác DHC. Tam giác CAD là tam giác gì?
b) trên DC lấy K sao cho C là trung điểm của DK. Chứng minh AK//BC
c) từ C kẻ đường thẳng song song với AB cắt AK tại M. BM cắt AM tại Q. Chứng minh: AM+CM>2MQ
a)Xet 2 tam giac vuong AHB va DHC co:
HC chung
DH = AH
=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)
Ta co : CA=CD (2 canh tuong ung)
=>\(\Delta\)CAD can
b)
Cho tam giác ABC vuông tại A có AB<AC.Kẻ AH vuông góc với BC tại H.Trên tia đối của tia HA lấy điểm M sao cho HM=HA
a)Chứng minh BA=BM và AB+AC>AM
b)Tia phân giác của góc HAC cắt HC tại O.Từ O kẻ đường thẳng song song với MC,cắt AM tại K.Chứng minh tam giác OKM là tam giác cân
Giúp mình với mn mình cảm ơn
a: Xet ΔBAM có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAM cân tại B
=>BA=BM
b: góc BAO+góc CAO=90 độ
góc BOA+góc OAH=90 độ
mà góc CAO=góc OAH
nên góc BAO=góc BOA
nên ΔBAO cân tại B
=>BA=BO=BM
=>BO=BM
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
=>OK vuông góc BM
góc KOM+góc BOK=góc BOM
góc KMO+góc BMH=góc BMO
mà góc BOK=góc BMH; góc BOM=góc BMO
nên góc KOM=góc KMO
=>ΔKMO cân tại K
Cho tam giác ABC có ba góc nhọn ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Trên đoạn thẳng HC lấy điểm E sao cho HE = HB
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE P AB
c) Chứng minh EAC = EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng minh A,E,N thẳng hàng
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
Cho tam giác vuông tại A (AB>AC) . Kẻ AH vuông góc ( H thuộc BC).Lấy điểm D thuộc tia đối của tia HA sao cho HD=HA
a) Chứng minh rằng tam giác CAH= tam giác CDH và tia CB là tia phân giác của ACD
b) Qua D kẻ một đường thẳng song song với AC cắt BC ở M. Chứng minh rằng tam giác CAH= tam giác MDH và AD là đường trung trực của đoạn CM
c) Kẻ BN vuông góc với đường thẳng AM ( N thuộc tia AM ) . Chứng minh rằng ba điểm B , N , D thẳng hàng.
a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có
HA=HD
CH chung
Do đó: ΔCAH=ΔCDH
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK
Cho tam giác ABC vuông tại A ( AB > AC ) , kẻ AH vuông góc BC ( H thuộc BC) , lấy điểm D thuộc tia HA sao cho HD = HA .
a) CMR : tam giác CAH = tam giác CDH và tia CB là tia phân giác của góc ACD
b) Qua Ở kẻ đường thẳng l song song với AC cắt BC tại M và đường thẳng l cắt AB tại K .Chứng minh rằng : tam giác CHA = tam giác MHD và AD là đường trung trực của đoạn CM
cho tam giác ABC vuông tại A. qua A kẻ dường thẳng vuông góc với BC tại H. trên tia đối của tia HA lấy M sao cho HM=HA. từ M kẻ đường thẳng song song với BC. từ C kẻ đường thẳng song song với AB, chúng cắt nhau tại N. chứng minh BN=CN
Cho tam giác ABC vuông tại A có AB = AC Gọi I là trung điểm của BC D là trung điểm của AC a chứng minh tam giác amb bằng tam giác ABC và AE vuông góc với BC b từ A kẻ đường thẳng vuông góc với BD cắt BC tại D trên tia đối của tia de lấy điểm F sao cho de = AB Chứng minh rằng tam giác ADM bằng C D E Từ đó suy ra AE = AB song song với CD e từ C kẻ đường thẳng vuông góc với AC cắt tại g Chứng minh tam giác ABD bằng tam giác ABC Chứng minh rằng AB = ACG