tìm \(ƯCLN(2011^{2011}+2010^{2011};2010\times2011)\)
a) So sánh P và QBiết P = 2010/ 2011 + 2012/2011 +2012 2013 và Q = 2010+ 2011 + 2012/2011+ 2012 + 2013 b) Tìm hai số tựnhiên a và b, biết: BCNN(a,b)=420; ƯCLN(a,b)=21và a+21=b
B1 : So sanh P ,Q biết
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) Và Q = \(\frac{2010+2011+2012}{2011+2012+2013}\)
B2 : Tìm a, b Biết BCNN(a,b) = 420 Và ƯCLN(a,b) = 21. a+ 21 = b
Bài :1
\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
a) So sánh P và Q
Biết\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) và\(\frac{2010+2011+2012}{2011+2012+2013}\)
b) Tìm hai số tự nhiên a và b, biết: BCNN(a,b)=420;ƯCLN(a,b)=21 và a+21=b
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
Tìm phần nguyên của (2011^2011+2010^2010)/(2011^2011-2010^2010) (đây là phân số nhé)
tìm cách thuận tiên để so sánh M và N biết;
M=2010/2011+2011/2012 và N=2010+2011/2011+2012
Tìm cách thuận tiện nhất để so sánh M và N biết m = 2010 /2011 + 2011 / 2012 n bang 2010 +2011 /2011 + 2012
N=\(\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
M=\(\frac{2010}{2011}+\frac{2011}{2012}\)
ta có \(\frac{2010}{2011+2012}< \frac{2010}{2011}\)
\(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
-> N<M
So sánh A và B,biết:A=2010+2011/2010+2011 và B=2010/2011+2011/2010
cho a,b,c,d # 0 và : (x^2011+y^2011+z^2011+t^2011)/a^2+b^2+c^2+d^2 = (x^2010)/a^2 + ( y^2010)/b^2 + (z^2010)/c^2 + (t^2010)/d^2. Tính T= x^2011 + y^2011 + z^2011 + t^2011
So sánh A và B với A=(20112010+20102010)2011 và B=(20112011+20102011)2010
Ta có :
\(A=\left(2010.2010^{2010}+2010.2011^{2010}\right)^{2010}+\left(2011.2010^{2010}+2011.2011^{2010}\right)^{2010}\)
\(\Rightarrow\left(2010.2010^{2010}+2011.2011^{2010}\right)^{2010}=B\)