Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh hiếu anh
Xem chi tiết
Nguyễn Đức Minh
10 tháng 5 2022 lúc 14:09

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ha quang dung
Xem chi tiết
fan FA
14 tháng 8 2016 lúc 17:43

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

Đáp số: n=28.

Cristiano Ronaldo
12 tháng 10 2017 lúc 12:19

1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.

2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )

3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13

Được cập nhật Bùi Văn Vương 

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

jennyfer nguyen
Xem chi tiết
Vũ Anh Quân
20 tháng 10 2016 lúc 19:30

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

Nguyễn Đức Minh
10 tháng 5 2022 lúc 14:09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hưng lê ngọc quang
Xem chi tiết
Tran Thi Xuan
Xem chi tiết
nguyen thi thuy anh
Xem chi tiết

Nếu n là chẵn thì n^2 chẵn và n+3 lẻ => n^2-(n+3) là lẻ => n^-n+3 không chia hết cho 2( n khác 0 vì n thuộc n sao )

Nếu n là lẻ thì n^2 là lẻ và n+3 chẵn => n^2-(n+3) là lẻ => n^2-(n+3) không chia hết cho 2

bui viet minh quan
Xem chi tiết
Phạm Tuấn Đạt
22 tháng 11 2017 lúc 12:07

Để chứng minh , ta xét 2 trường hợp

TH1: n là số lẻ

=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(1)

TH2 : n là số chẵn 

=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)

Mà số chẵn nào cũng chia hết cho 2

=> (n+8)(n+3) chia hết cho 2.(2)

Từ (1) và (2)

=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N

Lee H
24 tháng 7 2018 lúc 20:32

nhan tung ra la xong

Võ Thị Gia Hân
Xem chi tiết
Xyz OLM
21 tháng 5 2019 lúc 17:13

Ta có A = 1 + 2 +3 + ... + n

             = n(n+1) : 2

lại có n(n+1) là tích chẵn

=> n(n+1) \(⋮\)2

=> a \(⋮\)2

=> a chẵn 

mặt khác, 2n + 1 \(⋮̸\)2

=> 2n + 1 là số lẻ

=> b lẻ

Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1

=> chúng là 2 số nguyên tố cùng nhau

tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)

Phạm Thùy Dung
Xem chi tiết