cho a , b thuộc N và a - b chia hết cho 7
Chứng minh rằng : 4a + 3b chia hết cho 7
Cho a,b thuộc N và a - b chia hết cho 7. Chứng minh rằng 4a + 3b chia hết cho 7
Do (a - b) ⋮ 7 ⇒ a - b = 7k (k ∈ ℕ)
⇒ a = 7k + b
⇒ 4a + 3b = 4.(7k + b) + 3b
= 28k + 4b + 3b
= 28k + 7b
= 7.(4k + b) ⋮ 7
Vậy (4a + 3b) ⋮ 7
Cho a,b thuộc N và a- b chia hết cho 7. Chứng minh rằng 4a + 3b chia hết cho 7
4a+3b
=(4+3).ab
=7.ab
chia hết cho 7 vì 7 chia hết cho 7 và a-b chia hết cho 7
Cho a,b thuộc N và a-b chia hết cho 7 , Chứng minh rằng 4a +3b chia hết cho 7
a - b chia hết cho 7 => 4(a - b)chia hết cho 7.
= (4a + 3b) + 4(a - b)
= 4a + 3b + 4a - 4b
= (4a - 4a) + (3b + 4b)
= 7b chia hết cho 7.
=> (4a + 3b) + 4(a - b) chia hết cho 7.
Mà 4(a - b) chia hết cho 7
=> 4a + 3b chia hết cho 7 (ĐPCM)
cho a,b thuộc N và a-b chia hết cho 7
chứng minh rằng 4a+3b chia hết cho 7
a - b chia hết cho 7 => 4(a - b)chia hết cho 7.
= (4a + 3b) + 4(a - b)
= 4a + 3b + 4a - 4b
= (4a - 4a) + (3b + 4b)
= 7b chia hết cho 7.
=> (4a + 3b) + 4(a - b) chia hết cho 7.
Mà 4(a - b) chia hết cho 7
=> 4a + 3b chia hết cho 7 (ĐPCM)
Cho a, b thuộc Z và a - b chia hết cho 7. Chứng minh rằng: 4a + 3b chia hết cho 7
TA CÓ \(\left(a-b\right)⋮7\)
\(\Rightarrow3\left(a-b\right)⋮7\)
\(\Rightarrow\left(3a-3b\right)⋮7\)
Mà nếu \(\left(4a+3b\right)⋮7\)
thì \(\left(4a+3b\right)+\left(3a-3b\right)⋮7\)
\(\Rightarrow\left(4a+3b+3a-3b\right)⋮7\)
\(\Rightarrow7a⋮7\left(đpcm\right)\)
Vậy nếu \(\left(a-b\right)⋮7\)thì \(\left(4a+3b\right)⋮7\)
Cho a-b=7, chứng minh rằng 4a+3b chia hết cho 7 (a,b thuộc N)
Cho a,b thuộc N và a- b chia hết cho 7 . CMR 4a+3b chia hết cho 7
Cho a,b thuộc N. và a - b chia hết cho 7. CMR: 4a + 3b chia hết cho 7.
Cho a,b thuộc N. và a - b chia hết cho 7. CMR: 4a + 3b chia hết cho 7.
\(a-b⋮7\Rightarrow4\left(a-b\right)⋮7\Rightarrow4a-4b⋮7\Rightarrow4a-7b+3b⋮7\)
\(\Rightarrow4a+3b-7b⋮7\)mà \(-7b⋮7\)nên \(4a+3b⋮7\)(a,b thuộc N)
vậy \(a-b⋮7\)thì \(4a+3b⋮7\)(a,b thuộc N)