cho x+y và x-y là số hữu tỉ.chứng minh x, y là số hữu tỉ
Cho số hữu tỉ \(y=\frac{2a-1}{-3}\)với giá trị nào của a thì
a)x là số hữu tỉ dương
b)x là số hữu tỉ âm
c)x là số hữu tỉ không âm và không dương
mình học lớp 6 lên lớp 7 nên cần chỉ bảo
CHO X LÀ MỘT SỐ HỮU TỈ KHÁC 0, Y LÀ MỘT SỐ VÔ TỈ . CHỨNG TỎ RẰNG X+Y VÀ X*Y LÀ NHỮNG SỐ VÔ TỈ
AI NHANH ĐÚNG NHẤT MINK SẼ TÍCH
Cho x là số hữu tỉ khác 0, y là số vô tỉ. Chứng minh rằng: x+y; x-y; x.y; \(\frac{x}{y}\) la những số vô tỉ
Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.
Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$
$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)
Điều này vô lý do $y$ là số vô tỉ.
$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.
Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.
-------------------------------
Chứng minh $xy$ vô tỉ.
Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$
$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.
-------------------------------
CM $\frac{x}{y}$ vô tỉ.
Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$
$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$
Điều này vô lý do $y\not\in Q$
$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.
cho x,y là các số hữu tỉ \(^{x^5+y^5=2x^3y^3}\)
c/m: H=\(1-\frac{1}{xy}\)là bình phương của một số hữu tỉ
CMR
a, tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
b,tích của 1 số hữu tỉ khác 0 với 1 số vô tỉ là 1 số vô tỉ
c, thương của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
ko bik làm thông cảm nha( OLM đừng xóa )
CMR
a, tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
b,tích của 1 số hữu tỉ khác 0 với 1 số vô tỉ là 1 số vô tỉ
c, thương của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỉ
a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ
=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn
Vậy tổgg só là số vô tỉ
là số vô tỉ
cô Loan viết xong không xem lại đề
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay số hữu tỉ?
Gọi a là số vô tỉ, b là số hữu tỉ.
Ta có a/b là số vô tỉ vì ngược lại nếu a/b = b' là số hữu tỉ thì a = b . b'
Khi đó, b là số hữu tỉ và b’là số hữu tỉ nên a là số hữu tỉ ( tích của hai số hữu tỉ là số hữu tỉ); trái với giả thiết a là số vô tỉ.
Do đó, thương của một số vô tỉ và một số hữu tỉ là số vô tỉ.
Tích của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay hữu tỉ?
Gọi a là số vô tỉ, b là số hữu tỉ khác 0.
Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì a = b'/b là thương của hai số hữu tỉ
suy ra a là số hữu tỉ, mâu thuẫn với a là số vô tỉ.
Vậy tích của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ.