So sánh A và B biết
A=\(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
B=\(\frac{2009+2010+2011}{2010+2011+2012}\)
\(A=\frac{2011x2012}{2011+2012}+\frac{2009x2010}{2009+2010};B=\frac{2011x2011}{2011+2012}+\frac{2009x2009}{2009+2010}\)
hãy so sánh hai biểu thức trên
chắc chắn là A > B
hãy ủng hộ mk bằng một niềm tin nhé
^ _ ^ hihi
là a lớn hơn b
nhé các bạn thân mến.
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}
So sánh:
a) \(\frac{-22}{45}\)và \(\frac{-51}{103}\)
b) \(\frac{2009^{2009}+1}{2009^{2010}+1}\)và \(\frac{2009^{2010}-2}{2009^{2011}-2}\)
c) \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)và \(\frac{2010+2011+2012}{2011+2012+2013}\)
d)\(\frac{121212}{171717}\)+ \(\frac{2}{7}\)- \(\frac{404}{1717}\)và \(\frac{10}{17}\)
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
so sánh già trị các biểu thức sau
\(A=\frac{2011\times2012}{2011+2012}+\frac{2009\times2010}{2009+2010}\)
\(B=\frac{2011\times2011}{2011+2012}+\frac{2010\times2010}{2009+2010}\)
\(A=\frac{2011\times2012}{2011+2012}+\frac{2009\times2010}{2009+2010}\)
\(A=\frac{2011\times2011}{2011+2012}+\frac{2011}{2011+2012}+\frac{2010\times2010}{2009+2010}-\frac{2010}{2009+2010}\)
\(A=\frac{2011\times2011}{2011+2012}+\frac{2010\times2010}{2009+2010}+\frac{2011}{2011+2012}-\frac{2010}{2009+2010}\)
\(A=B+\frac{2011}{2011+2012}-\frac{2010}{2009+2010}\)
\(A=B+\frac{2011}{4023}-\frac{2010}{4019}\)
Dễ thấy \(\frac{2011}{4023}-\frac{2010}{4019}< 0\)
\(\Rightarrow A< B\)
So sánh A và B biết
A = \(\frac{2009}{2010}-\frac{2010}{2011}+\frac{2011}{2012}-\frac{2012}{2013}\)
B = \(-\frac{1}{2009.2010}-\frac{1}{2011.2012}\)
\(A=\left(1-\frac{1}{2010}\right)-\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)-\left(1-\frac{1}{2013}\right)=-\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(A=-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Vì 2010.2011 > 2009.2010 => \(\frac{1}{2010.2011}-\frac{1}{2009.2010}\)
\(-\frac{1}{2012.2013}>-\frac{1}{2011.2012}\)
=> A > B
\(A=\left(1-\frac{1}{2010}\right)-\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)-\left(1-\frac{1}{2013}\right)\)
\(A=-\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(A=-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Vì \(2010.2011>2009.2010\Rightarrow\frac{1}{2010.2011}< \frac{1}{2009.2010}\Rightarrow-\frac{1}{2010.2011}>\frac{1}{2009.2010}\)
\(A=-\frac{1}{2012.2013}\)
\(B=-\frac{1}{2011.2012}\)
\(-\frac{1}{2012.2013}>-\frac{1}{2011.2012}\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
So sánh : \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\) và \(\frac{2016}{2017}\)
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
mình ko hiểu lắm sao tự nhiên lại đang \(\frac{1}{2010.\left[2010+2011+2012\right]}\)lại sang luôn \(\frac{\frac{1}{2010}}{2010+2011+2012}\)
CHO : \(A=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
VÀ : \(B=\frac{2010+2011+2012}{2011+2012+2013}\)
SO SÁNH A VÀ B
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
So sánh : \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}vàB=\frac{2008+2009+2010}{2009+2010+2011}\)