1.a/150=3/4; 2.10,36 nhân a<262
Rút gọn
a) A=1+3+\(3^2+3^3+....+3^{200}\)
b)B=1+4+\(4^2+4^3+....+4^{312}\)
tính A= 3+\(\frac{3}{1+2}\)+\(\frac{3}{1+2+3}\)+\(\frac{3}{1+2+3+4}\)+....+\(\frac{3}{1+2+3+4+...+100}\)
Ta có : A= 3[1 + 1/(1+2) + 1/(1+2+3) +...+1/(1+2+3+..+100)]
Ta thấy: 1/(1+2) = 1/(2.3/2)=2/(2.3)
1/(1+2+3) = 1/(3.4/2)=2/(3.4)
...
1/(1+2+3+...+100)=1/(101.100/2)=2/(101.100)
Suy ra : A= 3[1+ 2/(2.3) + 2/(3.4) +...+ 2/(100.101)]
= 3.2.[1/2 + 1/(2.3) + 1/(3.4) +...+ 1/(100.101)]
= 6.( 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/100- 1/101)
= 6.(1/2 + 1/2-1/101)
= 6. 100/101
= 600/101
Vậy A = 600/101
Chúc bạn học tốt
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)
bài 2: tính giá trị các bt sau:
a) N=\(\frac{13}{12}\times a-\frac{1}{4}\times b-\frac{13}{12}\times b\)với a-b=\(\frac{3}{8}\)
b)C=\(\frac{3}{16}\times a-\frac{3}{8}\times b+\frac{3}{16}\times c\)với a+c=2b+1
bài 3:
A= 1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}\)
CMR:A<6
M= 1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\)
CMR:M>\(2\frac{1}{12}\)
B=\(\frac{1}{^{2^2}}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{19^2}+\frac{1}{20^2}\)
CMR:B<\(\frac{3}{4}\)
C\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}\)
CMR:C<1
Cho A = 1 + 4+ 4\(^2\)+4\(^3\) +.....................+4 mũ 99
Tìm x biết 3.A+1=4 mũ x
A = 1 + 4 + 42 + ... + 499
4A = 4 + 42 + ... + 4100
4A - A = 4100 - 1
3A = 4100 - 1
=> 4100 - 1 + 1 = 4x
=> 4100 = 4x
=> x = 100
Tính tổng: \(A=\frac{1}{2}\)(1+2)+\(\frac{1}{3}\)(1+2+3)+\(\frac{1}{4}\)(1+2+3+4)+....+\(\frac{1}{2013}\)(1+2+3+...+2013)
Lời giải:
$A=\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{2013}.\frac{2013.2014}{2}$
$=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2014}{2}$
$=\frac{3+4+5+...+2014}{2}$
$=\frac{1+2+3+4+5+...+2014}{2}-\frac{3}{2}$
$=\frac{2014.2015:2}{2}-\frac{3}{2}$
$=1014551$
Chứng minh với mọi số tự nhiên n # 0 thì:
a) \(\frac{1}{4}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{4^n}\)<\(\frac{1}{3}\)
b) \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{n}{3^n}<\frac{3}{4}\)
so sánh hai số bằng cách vận dụng hằng đẳng thức
a) A=\(2^{16}\) và B=\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
b) A=\(4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\) và B=\(3^{218}-1\)
\(a.\)
Ta sẽ biến đổi biểu thức \(B\) quy về dạng có thể dùng được hằng đẳng thức \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
Vì \(2^{16}>2^{26}-1\) nên \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
Vậy, \(A>B\)
Tương tự với câu \(b\) kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)
Mặt khác, do \(\frac{1}{2}<1\) nên \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)
Vậy, \(B>A\)
a,\(A=a.\frac{1}{2}-a.\frac{2}{3}+a.\frac{3}{4}vớia=\frac{-6}{5}\)
b,\(B=\frac{-1}{6}.b+\frac{4}{3}.b-\frac{1}{2}.bvớib=\frac{-3}{7}\)
c,\(C=c.\frac{5}{4}+c.\frac{1}{6}-c.\frac{17}{12}vớic=\frac{2013}{2014}\)
Bài 4 : Tìm x :
a) ( 0,75 - 40% . x ) . \(\frac{3}{4}\) - \(\frac{1}{4}\) = - \(2\frac{1}{3}\)
b) ( x - 3/4 ) : \(\frac{-2}{5}\) - \(1\frac{2}{7}\) = - \(4\frac{1}{3}\)
c) 30% - 25% . x + \(\frac{3}{4}\) . x = - 640
a) \(\left(0,75-40\%x\right).\frac{3}{4}-\frac{1}{4}=-2\frac{1}{3}\)
\(\Rightarrow\left(\frac{3}{4}-\frac{2}{5}x\right).\frac{3}{4}-\frac{1}{4}=-\frac{7}{6}\)
\(\Rightarrow\left(\frac{3}{4}-\frac{2}{5}x\right).\frac{3}{4}=-\frac{7}{3}+\frac{1}{4}\)
\(\Rightarrow\left(\frac{3}{4}-\frac{2}{5}x\right).\frac{3}{4}=-\frac{28}{12}+\frac{3}{12}=\frac{25}{12}\)
\(\Rightarrow\frac{3}{4}-\frac{2}{5}x=\frac{25}{12}:\frac{3}{4}=\frac{25}{12}.\frac{4}{3}=\frac{25}{9}\)
\(\Rightarrow\frac{2}{5}x=\frac{3}{4}-\frac{25}{9}=\frac{27}{36}-\frac{100}{36}=-\frac{73}{36}\)
\(\Rightarrow x=-\frac{73}{36}:\frac{2}{5}=-\frac{73}{36}.\frac{5}{2}=-\frac{365}{72}\)