Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyengiakhanh
Xem chi tiết
Yen Nhi
17 tháng 9 2021 lúc 13:40

Hình tự vẽ nhé

Theo đề ra, ta có: \(P_{AEMF}=2a\Rightarrow2\left(AE+EM\right)=2a=2AB\)

\(\Rightarrow AE+EM=AB=AE+EB\)

\(\Rightarrow EM=EB\)

=> Tam giác EBM vuông cân tại E

\(\Rightarrow\widehat{EBM}=\widehat{ABC}=45^o\)

=> B, M, C thẳng hàng

=> M di động trên BC

Khách vãng lai đã xóa
Lôi Long
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Cố Tử Thần
19 tháng 3 2019 lúc 22:07

chị ko rảnh

hok tốt

k chị vs đừng k sai

Bui Huyen
19 tháng 3 2019 lúc 22:10

Mizusawa nè ,bạn ko lm đc thì thôi chứ cmt linh tinh z

lúc nào cx cmt nhưng mấy khi bn lm đc bài

Cố Tử Thần
20 tháng 3 2019 lúc 16:13

hứ.......

mik làm đc

Kem Su
Xem chi tiết
Linh
Xem chi tiết
Phùng Nhật Minh
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết

Bài 2:

loading...

Ta có: ∆ABC là ∆ cân tại A(gt)

=>∠ABC=∠ACB

+Ta có BD là tia pgiac của ∠ABC

=>∠B1=∠B2=1/2∠ABC

+Ta có CE là tia pgiac ∠ACB

=>C1=C2=1/2∠ACB

Xét 

AEC và ΔADB có:

+∠A chung

+AB=AC

+C1=B1

=> ΔAEC = ΔADB

=> AE = AD

=>BCDE là hình thang cân

b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)

Ta có: ED//BC

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)

Mà ∠DEB=∠EDC

Ta có:

+∠DEB+∠AED=180o (kề bù)

=>50o+∠AED=180o

=>∠AED=180o-50o=130o

=>∠AED=∠ADE=130o

Bài 1:

 

loading...

Ta có: AD=BC=3cm (t/c hthang)

Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)

Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)

=>∠ABD=∠BDC 

=>∆ABD cân tại A

=>AD=BC=3cm

Vì ∆DBC vuông tại B

nên ∠BDC+∠C=90o

Mà ∠ADC=∠C (do ABCD là hình thang cân)

và ∠BDC=1/2 ∠ADC

=> ∠BCD=1/2∠C

Khi đó: ∠C+1/2∠C=90o=>∠C=60o

- Kẻ từ B 1 đường thẳng // AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

Mà ∠BEC=∠ADC(đồng vị)

=>∠BEC=∠C

=>∆BEC cân tại B có ∠C=60o

=>∆BEC là ∆ cả cân cả đều

=> EC=BC=3cm

Ta có: CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

loading...

Xét \(\Delta\)ABD có: \(\widehat{ABD}\) = \(\widehat{BDC}\) ( hai góc so le trong)

                         \(\widehat{ADB}\) = \(\widehat{BDC}\) (BD là phân giác của góc \(\widehat{ABD}\))

            ⇒          \(\widehat{ABD}\) =  \(\widehat{ADB}\) (vì cùng bằng góc BDC)

             ⇒          \(\Delta\) ABD cân tại A ⇒ AB = AD = 3 cm

Gọi E là trung điểm của DC ta có:\(\Delta\)BCD vuông tại B nên

BE = DE = EC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Mặt khác ta có: \(\widehat{ADC}\) = \(\widehat{DCB}\) ( vì ABCD là hình thang cân)

\(\widehat{BDC}\) = \(\dfrac{1}{2}\) \(\widehat{DCB}\) ⇒ \(\widehat{DCB}\) + \(\dfrac{1}{2}\)\(\widehat{DCB}\) = 900 

⇒ \(\widehat{DCB}\) \(\times\) ( 1 + \(\dfrac{1}{2}\)) = 900

⇒ \(\widehat{DCB}\) = 900 : \(\dfrac{3}{2}\) = 600 

Xét \(\Delta\)BCE có BE = EC và  \(\widehat{BCE}\) = 600 nên \(\Delta\)BCE là tam giác đều

⇒ BE = EC = BC = 3 cm 

⇒ DC = BE \(\times\) 2 = 3 \(\times\) 2 = 6 cm

Chu vi của hình thang ABCD là:

3 + 3 + 6 + 3 = 15 (cm)

Kết luận chu vi hình thang là: 15 cm

 

 

 

nguyễn học kha my
Xem chi tiết