Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Nguyễn Anh Kiệt
Xem chi tiết
Trần Đại Nghĩa
4 tháng 7 2019 lúc 10:38

Số số hạng của tổng B là:

\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)

\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)

\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)

Số số hạng của tổng A thuộc nguyên âm là:

\(\frac{2014}{2}=1007\)(số hạng)

\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)

\(A=\left(-2029105\right)+4060225\)

\(A=2031120\)

Mà \(2031120=2031120\)

\(\Rightarrow A=B\)

Nguyệt
4 tháng 7 2019 lúc 11:49

\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)

\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)

\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)

\(A=1+2+3+4+...+2015=B\)

Nguyễn Văn quyết
Xem chi tiết
Đinh Tuấn Việt
5 tháng 10 2015 lúc 9:28

\(A=2^{2014.2015}.5^{2014.2015}\)

\(B=2^{2015.2014}.5^{2015.2014}\)

Vậy A = B

Nguyễn Ngọc Quý
5 tháng 10 2015 lúc 9:44

Haha , Việt làm sai đâu phải nhân đâu              

Phạm Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:26

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 10:34

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

Vũ Minh Châu Anh
Xem chi tiết
Trần Ngọc Thảo Uyên
Xem chi tiết
Nguyễn Văn Thi
19 tháng 12 2014 lúc 13:57

A=1+"2+22+23+...+22014"

2A="2+22+23+...22014"+22015

=>A=2A-A=22015-1(do 2 phần có dấu(")trừ cho nhau là hết nên còn 22015-1)

Vì 22015-1=22015-1

nên A=B

Nguyễn trần khánh linh
Xem chi tiết
Long Thiên
Xem chi tiết
Anh Thư Hoàng
Xem chi tiết
Nguyễn Quang Linh
Xem chi tiết