cho a,b,c,x,y thoa man x^2+y^2=1, x^4/a +y^4/b = 1/a+b
CMR x^02010/a^1005 +y^2010/b^1005 = 2/(a+b)^1005
Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)và \(x^2+y^2=1\)
CMR:
a) \(bx^2=ay^2\)
b) \(\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\)
ai giải đúng và sớm nhất cho 1 tk vip 6 tháng ♫♥♪
a)Ta có
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)
\(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Rightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
\(\Rightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+y^2-2x^2y^2\right)ab\)
\(\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Rightarrow x^4b^2+y^4b^2-2x^2y^2ab=0\)
\(\Rightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Rightarrow x^2b-y^2a=0\)
\(\Rightarrow x^2b=y^2a\left(dpcm\right)\)
b) từ kết quả câu a) ta suy ra dc
\(\frac{x^2}{a}=\frac{y^2}{b}\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
Mà \(x^2+y^2=1\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1005}=\left(\frac{y^2}{b}\right)^{1005}=\frac{1^{1005}}{\left(a+b\right)^{1005}}\Rightarrow\frac{x^{2010}}{a^{1005}}=\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}\)
\(\Rightarrow\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}+\frac{1}{\left(a+b\right)^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\left(dpcm\right)\)
Vầy đúng không nhỉ nếu đúng T I C K cho mình nha
Ko biết có nhanh nhất ko nhưng dù sao cũng xong rồi
Cho : \(\dfrac{1}{a^2y^2+x^2b^2}\)=\(\dfrac{x^2}{a^2y^2}\) và \(x^2\)+\(y^2\) = 1
CMR : \(\dfrac{x^{2010}}{a^{1005}}\) + \(\dfrac{y^{2010}}{b^{1005}}\) = \(\dfrac{2}{\left(a+b\right)^{1005}}\)
x2 phần a2y2=1 phần a2y2 + b2x2 và x2+y2=1 . CM x2010 phần a1005 + y2010 phần b1005 =2 phần (a+b)1005
Cho a,b là các số dương và x,y khác không thỏa mãn
\(\frac{x^2}{a^2.y^2}\)\(=\)\(\frac{1}{a^2.y^2+b^2.x^2}\)và \(x^2\)+\(y^2\)\(=1\)
CMR:\(\frac{x^{2010}}{a^{1005}}\)+\(\frac{y^{2010}}{b^{1005}}\)\(=\)\(\frac{2}{\left(a+b\right)^{1005}}\)
Cho a , b ,c thỏa mãn a^2010 + b^2010 + x^2010 = a^1005.b^1005 + b^1005.c^1005 + c^1005 a^1005 Tính (a - b)^20 + (b - c)^11 + (c - a)^2010
https://olm.vn/hoi-dap/question/1038454.html
Mình vừa làm cách đây 11 phút nhé !
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010
= (a - a)20 + (a - a)11 + (a - a)2010
= 0 + 0 + 0
= 0 .
=> ĐPCM
Tìm Mac (Min)
A=|x+1| +|y-2|+(-39)
B=-1005-|xy-4|-|x+2|
1) cho a^3-3ab^2=2 và b^3-3a^2b=-11. Tính a^2+b^2
2) cho a,b,c thỏa mãn a^2010+b^2010+c^2010=a^1005.b^1005+b^1005.c^1005+c^1005.a^1005. Tính giá trị biểu thức A= (a-b)^20+
(b-c)^11+(c-a)^2010
3) Cho a,b,c,d thuộc Z thỏa mãn a+b=c+d. chứng minh a^2+b^2+c^2+d^2 luôn là tổng của 3 số chính phương
MỌI NGƯỜI LÀM GẤP GIÚP VỚI Ạ ! :'(
Tìm Mac (Min)
A=|x+1| +|y-2|+(-39)
B=-1005-|xy-4|-|x+2|
a, Vì |x+1 và |y-2| đều >= 0 nên A >= 0+0+(-39) = -39
Dấu "=" xảy ra <=> x+1=0 và y-2=0 <=> x=-1 và y=2
Vậy ........
b, Vì |xy-4| và |x+2| đều >= 0 nên B < = -1005-0-0 = -1005
Dấu "=" xảy ra <=> xy-4=0 và x+2=0 <=> x=y=-2
Vậy ..........
k mk nha
Cho a , b ,c thỏa mãn a^2010 + b^2010 + c^2010 = a^1005.b^1005 + b^1005.c^1005 + c^1005 a^1005 Tính (a - b)^20 + (b - c)^11 + (c - a)^2010
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c