Cho m,n thuộc N* thỏa ƯCLN(m;n)=1.Tìm ƯCLN (4m+3n;5m+2n).
cho m và n thuộc N* thỏa mãn phân số m/n là phân số tối giản; 4m+3n/5m+2n không tối giản. Tìm ƯCLN của 4m+3nvaf 5m+2n
2 năm ko ai trả lời là sao
Cho m,n là hai số tự nhiên thỏa mãn ƯCLN(m,n)=1. Tìm ƯCLN(m2,n)
cho m&n là 2 số nguyên dương thỏa mãn(m&n)=1.tìm ƯCLN của 4m+3n&5m+2n
cho 2 số tự nhiên m và n khác 0 thỏa mãn (m+1/n) + (n+1/m) là số tự nhiên. chứng minh ƯCLN(m;n)<= căn bậc 2 (m+n)
giúp mk vs
Tìm a,b∈N thỏa mãn: ƯCLN(a,b)+BCNN(a,b)=23
Tìm các số m và n thỏa mãn:a^m và a^n(a thuộc Q và m,n thuộc N)
Cho a^m>a^n(a thuộc ,a>0 và m,n thuộc N)so sanh m và n
Câu a
Nếu a=0 thì m và n là các số tự nhiên khác 0 tùy ý
a=1 thì m và n là các số tự nhiên tùy ý
a=-1 thì m và n là các số chẵn tùy ý hoặc các số lẻ tùy ý
a khác 0,a khác+_ 1 thì m=n
Câu b
Nếu a>1 thì m>n
Nếu 0<a<1 thì m<n
Tìm ƯCLN ( 2n+3, n+1)
Với n thuộc N
Gọi ƯCLN(2n+3,n+1)=d.
Ta có: \(2n+3⋮d\) ; \(n+1⋮d\) \(\Rightarrow2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1.\)
Vậy ƯCLN(2n+3,n+1)=1
Gọi d là UCLN(2n+3;n+1)
Theo đề bài ta có:
\(2n+3⋮d\)
\(n+1⋮d\Rightarrow2\left(n+1\right)⋮d\Rightarrow2n+2⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(2n+3-2n-2⋮d\)
\(1⋮d\)
\(d_{MAX}\Rightarrow d=1\)
Tìm ƯCLN(2n-1,9n+4) với n thuộc N
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
Cho m,n thuộc N và p là số nguyên tố thỏa mãn: p/( m-1)=(m+n)/p
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
Chúc bạn thành công trong học tập :