Chứng tỏ A> căn 2017/2018
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
45612223698++56456+89575637259415767549846574257
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
cho A =1+2^2018+3^2017+4^2016+...+2018^2+2019,B=1+2^2017+3^2016+...+2017^2+2018,chứng tỏ giá trị biểu thức A-3B dương
2017/căn 2018+2018/căn 2017 so sánh với căn 2017 + căn 2018
Áp dụng BĐT Svác-xơ ta có:
\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2017}+\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)
do \(\frac{2017}{\sqrt{2018}}\ne\frac{2018}{\sqrt{2017}}\)nên dấu "=" không xảy ra
Vậy \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)
Cho x + y = 2 chứng tỏ x^2017 + y^2017 <= x^2018 + y^2018
Cho 2 số tự nhiên a=2^2017+3^2017 và b=2^2018+3^2018. chứng tỏ rằng a và b là 2 số nguyên tố cùng nhau
chứng minh căn 2016 - 2* căn 2017 + căn 2018 < 0
cần CM: \(\sqrt{2018}+\sqrt{2016}< \)\(2\sqrt{2017}\)
<=> \(2018+2016+2\sqrt{2018\cdot2016}< \)\(4\cdot17\)
<=>\(\sqrt{2018\cdot2016}< \)\(17\)
<=>\(\sqrt{2017^2-1}\)\(< \sqrt{2017^2}\) (BĐT luôn đúng)
Do đó \(\sqrt{2016}-2\sqrt{2017}+\sqrt{2018}< 0\)
Chứng tỏ với mọi n thuộc N ta có :
( n + 2017^2018 ) . ( n + 2018^2017 )
\(2015^{2016}+2016^{2017}+2017^{2018}+2018^{2019}\) chứng tỏ rằng tổng không là số chính phương
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM