Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Nguyễn Hưng Phát
27 tháng 12 2017 lúc 21:50

A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)

>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)

\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\)                                  (1)

Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)

\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)

\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\)                 (2)

Từ (1) và (2) suy ra:1 < A < 2

Vậy A không phải là số nguyên

dang
18 tháng 6 2018 lúc 21:33

vui nhi

Nguyễn Phương Linh
23 tháng 5 2020 lúc 20:05

45612223698++56456+89575637259415767549846574257

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
Galaxy
12 tháng 3 2018 lúc 20:26

hình như cái này đâu phải toán lớp 5 đâu bạn

Nguyễn Việt Long
12 tháng 3 2018 lúc 20:29

nhầm toán lớp 6

Trương Thị Viên
13 tháng 3 2020 lúc 15:47

12+13×14

Khách vãng lai đã xóa
Nguyễn Việt Long
Xem chi tiết
Phạm Viết Phương
Xem chi tiết
Kudo
11 tháng 7 2018 lúc 20:31

Áp dụng BĐT Svác-xơ ta có:

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2017}+\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

do  \(\frac{2017}{\sqrt{2018}}\ne\frac{2018}{\sqrt{2017}}\)nên dấu "=" không xảy ra

Vậy  \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

Phạm Đình Bảo Hoàng
Xem chi tiết
Nguyễn Quang Minh
Xem chi tiết
na kie
Xem chi tiết
Linh Phong
27 tháng 7 2017 lúc 14:30

cần CM: \(\sqrt{2018}+\sqrt{2016}< \)\(2\sqrt{2017}\)

<=> \(2018+2016+2\sqrt{2018\cdot2016}< \)\(4\cdot17\)

<=>\(\sqrt{2018\cdot2016}< \)\(17\)

<=>\(\sqrt{2017^2-1}\)\(< \sqrt{2017^2}\) (BĐT luôn đúng)

Do đó \(\sqrt{2016}-2\sqrt{2017}+\sqrt{2018}< 0\)

Trần Thị Thu Hương
Xem chi tiết
Xem chi tiết
Trịnh Trung Kiên
22 tháng 12 2019 lúc 20:59

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM

Khách vãng lai đã xóa