Cho x-y=7. Tính giá trị biểu thức A=x(x+2)+y(y-2)-2xy+37
Cho x=y+5 tính giá trị biểu thức x(x+2)+y(y-2)-2xy+64
\(x\left(x+2\right)+y\left(y-2\right)-2xy+64=x^2+2x+y^2-2y-2xy+64\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+64\)\(=\left(x-y\right)^2+2\left(x-y\right)+64\)
\(=\left(x-y\right)\left(x-y+2\right)+64\)\(=\left(y+5-y\right)\left(y+5-y+2\right)+64\)
=5.7+64=99=99
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
1.
a)Cho x+y=1.Tính giá trị của biểu thức
1-x3+y3+3xy
b)Cho x-y=1.Tính giá trị biểu thức
x3-y3-3xy
2.Cho x+y=2 và x2+y2=10. Tính giá trị M=x3+y3
b) \(x^3-y^3-3xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)
\(=\left(x-y\right)\left(1-xy\right)-3xy\)
\(=x-x^2y-y\)
a, Cho x+y=1. Tính giá trị của biểu thức x3+y3+3xy
b, Cho x-y=1. Tính giá trị của biểu thức x3-y3-3xy
a.Từ giả thiết:
x+y=1.
=> (x+y)^3=1^3=1
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT)
=> x^3+y^3+3xy(x+y)=1
=> x^3+y^3+3xy.1=1
<=> x^3+y^3+3xy=1
b.x3-y3-3xy=x3-y3-3xy.1
Mà x-y=1 nên
x3-y3-3xy=x3-y3-3xy(x-y)
x3-y3-3x2y+3xy2
=(x-y)3=13=1
Cho tỉ lệ thức: x +2 phần y +3= 2 phần 3 (y khác 0) Tính giá trị biểu thức: A= x² +y² phần xy
Bài 5:tìm giá trị vỉa biểu thức
P=2(x^3 + y^4) -3(x^2 + y^2).Biết x+y=1
Bài 6:cho a+b=6,a^2 + b^2=2010 .Tính giá tirị biểu thức M =a^3 + b^3
Bài 6:
a2+b2=(a+b)2-2ab
<=> 2010 =36-2ab
<=>ab=-987
M=a3+b3
=(a+b)(a2-ab+b2)
=6(a2+987+b^2)
=6(2010+987)
=17982
cho tỉ lệ thức x/3 =y/5 (x,y khác 0).tính giá trị biểu thức 5x^2 3y^2/10x^2-3y^2
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{5}=t(t\neq 0)$
$\Rightarrow x=3t; y=5t$
Khi đó:
$\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5(3t)^2+3(5t)^2}{10(3t)^2-3(5t)^2}=\frac{120t^2}{15t^2}=8$
Tính giá trị của biểu thức, với x = -4, y = -3. (-15)x + (-7)y
(-15)x + (-7)y = (-15)(-4) + (-7)(-3)
= 60 + 21 = 81.