Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Anh Thư
Xem chi tiết
Trương Hà Phương Thảo
Xem chi tiết
hoa anh dao
Xem chi tiết
Nobita Kun
27 tháng 7 2017 lúc 17:09

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

Nobita Kun
27 tháng 7 2017 lúc 16:19

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

Nobita Kun
27 tháng 7 2017 lúc 16:50

Bài 2

a, Đặt \(A=-2\left|x-\frac{3}{4}\right|-\left|y+\frac{3}{4}\right|+\frac{5}{6}\)

Để A đạt GTLN <=> \(-2\left|x-\frac{3}{4}\right|\)đạt GTLN và \(\left|y+\frac{3}{4}\right|\)đạt GTNN

mà \(\left|x-\frac{3}{4}\right|\ge0=>-2\left|x-\frac{3}{4}\right|\le0\)

và \(\left|y+\frac{3}{4}\right|\ge0\)

Do đó \(-2\left|x-\frac{3}{4}\right|=0\)và \(\left|y+\frac{3}{4}\right|=0\)

Vậy GTLN của A = 0 - 0 + 5/6 = 5/6 khi

\(\left|x-\frac{3}{4}\right|=0=>x-\frac{3}{4}=0=>x=\frac{3}{4}\)

Và \(\left|y+\frac{3}{4}\right|=0=>y+\frac{3}{4}=0=>y=-\frac{3}{4}\)

b, Đặt \(B=-\left(x+\frac{1}{2}\right)^2+\frac{5}{7}\)

Để B đạt GTLN thì \(-\left(x+\frac{1}{2}\right)^2\)đạt GTLN

Mà \(\left(x+\frac{1}{2}\right)^2\ge0=>-\left(x+\frac{1}{2}\right)^2\le0\)

Do đó để B đạt GTLN thì \(-\left(x+\frac{1}{2}\right)^2=0\)

Khi đó GTLN của B = 0 + 5/7 = 5/7 khi

\(\left(x+\frac{1}{2}\right)^2=0=>x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Pham Van Hung
Xem chi tiết
Kiệt Nguyễn
3 tháng 6 2020 lúc 19:23

Theo BĐT AM - GM cho 3 số dương, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3zx+x+y+z\)

\(\ge3xy+3zx+3\sqrt[3]{xyz}=3zx+3xy+3=3\left(zx+xy+1\right)\)(Do xyz = 1)

\(\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(zx+xy+1\right)}\)(1)

Tương tự ta có: \(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3\left(xy+yz+1\right)}\)(2); \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3\left(yz+zx+1\right)}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:  \(P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\)

Ta có BĐT: \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, với a, b dương thì (*)\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Áp dụng BĐT trên và sử dụng giả thiết xyz = 1, ta được: \(\frac{1}{xy+yz+1}=\frac{\sqrt[3]{xyz}}{y\left(z+x\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{xyz}}{y\left[\left(\sqrt[3]{z}\right)^3+\left(\sqrt[3]{x}\right)^3\right]+\sqrt[3]{xyz}}\le\frac{\sqrt[3]{xyz}}{y\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^3zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^2}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{zx}}{\sqrt[3]{y}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{zx}}=\frac{\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(*)

Tương tự: \(\frac{1}{yz+zx+1}\le\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(**); \(\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{yz}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(***)

Cộng theo từng vế của 3 BĐT (*), (**), (***), ta được: \(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}=1\)

\(\Rightarrow P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\le\frac{1}{3}\)

Đẳng thức xảy ra khi x = y = z = 1

Khách vãng lai đã xóa
ST
21 tháng 2 2020 lúc 23:01

https://h.vn//hoi-dap/question/873191.html

Khách vãng lai đã xóa
ST
21 tháng 2 2020 lúc 23:03

https://h.vn/hoi-dap/question/873191.html

Khách vãng lai đã xóa
Thân An Phương
Xem chi tiết
Nguyễn Huy Tú
11 tháng 8 2021 lúc 13:53

\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)

Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)

\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)

Dấu ''='' xảy ra khi x = -5

Vậy GTLN của A bằng 11/4 tại x = -5

Khách vãng lai đã xóa
Thân An Phương
11 tháng 8 2021 lúc 14:01

tks, cảm ơn nhìu ak

Khách vãng lai đã xóa
Dương Văn Chiến
Xem chi tiết
Nobi Nobita
19 tháng 10 2020 lúc 20:12

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)

\(\Rightarrow\sqrt{x}-1< 0\)

mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)

\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )

c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)

\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )

Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)

Khách vãng lai đã xóa
Ashura
19 tháng 10 2020 lúc 20:39

ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)

a,  Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

               \(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

              \(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)

             \(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)

             \(P=\sqrt{2x}-\sqrt{2}x\)

             \(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)

b,        Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)

                 \(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)

 c,        Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)  

                      \(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)

                      \(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)

               Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)

                                      \(\Rightarrow x=\frac{1}{4}\)

             vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)

Khách vãng lai đã xóa
hỏi bài trên mạng
Xem chi tiết
LÊ ĐĂNG KHOA
Xem chi tiết

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2

Chúc bạn học tốt!

Vũ Tuệ Lâm
8 tháng 8 2023 lúc 23:38

Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x

          l 2y -3l lớn hơn hoặc bằng 0, với mọi y

=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y

=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5

=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5

=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4

Vậy max Q = 4

Dẫu "=" xảy ra <=> x = -1 ; y = 3/2

phuongquyen
Xem chi tiết