Cho tam giác ABC vuông tại A. Từ điểm M thuộc miền trong của tam giác kẻ MI,MK,MH vuông góc với AB,AC,BC. Tìm vị trí của điểm M thuộc miền trong của tam giác để MI2+MK2+MH2 đạt giá trị nhỏ nhất.
Cho tam giác ABC vuông tại A. Từ một điểm M thuộc miền trong của tam giác kẻ MI,MK,MH vuông góc với AB,AC,BC. Tìm vị trí M thuộc miền trong tam giác để tổng MI2+MK2+MH2 đạt giá trị nhỏ nhất
1.Cho tam giác ABC, M thuộc BC ( M khác B và C) .Kẻ MD vuông góc AB, ME vuông góc AC. Xác định vị trí M để S tam giác MDE max
2.Cho tam giác ABC, M là điểm trong tam giác. Gọi H, D, E là hình chiếu của M thứ tự trên BC, CA,AB. Xác định vị trí của M sao cho giá trị của biểu thức
BC/MH +AC/MB +AB/ME đạt giá trị nhỏ nhất.
1.Cho tam giác ABC, M thuộc BC ( M khác B và C) .Kẻ MD vuông góc AB, ME vuông góc AC. Xác định vị trí M để S tam giác MDE max
2.Cho tam giác ABC, M là điểm trong tam giác. Gọi H, D, E là hình chiếu của M thứ tự trên BC, CA,AB. Xác định vị trí của M sao cho giá trị của biểu thức
BC/MH+AC/MB+AB/ME đạt giá trị nhỏ nhất.
TH1: nếu tam giác ABC vuông tại A . bạn tự vẽ hình nhé
dễ thấy tứ giác ADME là hình chữ nhật .=> diện tích ADME=EM.MD
diện tích tam giác ABC=S=(AC.AB)/2
mặt khác ta có AC=AE+EC\(\ge\sqrt{AE\cdot EC}\)
\(AB=AD+DB\ge2\sqrt{AD\cdot DB}\)
==>\(AC\cdot AB\ge4\sqrt{AE\cdot EC\cdot AD\cdot DB}\)
ta có tam giác CEM đồng dạng tam giác MDB(g.g)=>\(\frac{CE}{MD}=\frac{EM}{DB}\)
=> CE.DB=EM.MD mà AE=MD ;AD=EM
do đó AE.EC.AD.DB=\(\left(EM\cdot MD\right)^2\)
=>2.diện tích ABC\(\ge\) diện tích tứ giác ADME==>diện tích ADME\(\le\frac{S}{2}\)
do đó MAX diện tích ADME=S/2 hay MAX diện tích MDE=S/4
dấu'=' xảy ra khi AE=EC và DA=DB hay M là trung điểm của BC
1.Cho tam giác ABC đều, M thuộc BC ( M khác B và C) .Kẻ MD vuông góc AB, ME vuông góc AC. Xác định vị trí M để S tam giác MDE max
2.Cho tam giác ABC, M là điểm trong tam giác. Gọi H, D, E là hình chiếu của M thứ tự trên BC, CA,AB. Xác định vị trí của M sao cho giá trị của biểu thức BC/MH+AC/MB+AB/ME
$$ đạt giá trị nhỏ nhất.
1.Cho tam giác ABC, M thuộc BC ( M khác B và C) .Kẻ MD vuông góc AB, ME vuông góc AC. Xác định vị trí M để S tam giác MDE max
2.Cho tam giác ABC, M là điểm trong tam giác. Gọi H, D, E là hình chiếu của M thứ tự trên BC, CA,AB. Xác định vị trí của M sao cho giá trị của biểu thức
BC/MH+AC/MB+AB/ME đạt giá trị nhỏ nhất.
1.Cho tam giác ABC, M thuộc BC ( M khác B và C) .Kẻ MD vuông góc AB, ME vuông góc AC. Xác định vị trí M để S tam giác MDE max
2.Cho tam giác ABC, M là điểm trong tam giác. Gọi H, D, E là hình chiếu của M thứ tự trên BC, CA,AB. Xác định vị trí của M sao cho giá trị của biểu thức
\(\frac{BC}{MH}+\frac{AC}{MB}+\frac{AB}{ME}\) đạt giá trị nhỏ nhất.
Giúp em với
B1:Tam giác ABC vuông tại A. điểm M bất kì trong tam giác. Từ M kẻ MI;ME;MK lần lượt vuông góc với BC:AC;AB.Tìm vị trí của M để MI^2+ME^2+MK^2 min
B2:Cho tam giác ABC vuong tạo A.Trên AB,BC,CA lấy K;M;N sao cho tam giác MNK vuông cân tại K. kẻ MH vuông góc với AB=H.
1,CMR tam giác AMK=tam giác AKN
2,Xác định K;M;N để diện tích tam giác K;M;N nhỏ nhất
b1:
Bạn cũng có thể gộp chung thế này:
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >=
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 =
AH^2/2 + (M'H - M'A)^2/2
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH.
=> M trùng với M' và MA = M'A = M'H = MH
=> M nằm ở trung điểm AH
Cho tam giác ABC vuông tại A. Từ M trong tam giác ABC kẻ MI vuông góc với BC , MJ vuông góc với CA, MK vuông góc với AB. Tìm vị trí của M để tổng MI2 + MJ2 + MK2 nhỏ nhất
Cho tam giác ABC nhọn và điểm M nằm trong tam giác. Kẻ MH, MK, ML theo thứ tự vuông góc với các cạnh BC, CA, AB. Xác định vị trí iểu thức :của M sao cho b y = \(AL^2+BH^2+CK^2\)đạt giá trị nhỏ nhất? (biết AB = c; BC = a; AC = b)
MONG MỌI NGƯỜI GIÚP CẢM ƠN