ĐỀ
CHO A VÀ B LÀ HAI SỐ TỰ NHIÊN LIÊN TIẾP ( A < B ). CHỨNG TỎ RẰNG A VÀ B LÀ 2 SỐ NGYÊN TỐ CÙNG NHAU.
GIÚP CHO MÌNH VỚI . MAI MÌNH PHẢI NỘP BÀI RỒI.
Cho a và b là 2 số tự nhiên liên tiếp ( a < b ) . Chứng tỏ rằng a và b là 2 số nguyên tố cùng nhau
Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a
Ta có : n chia hết cho a (1)
n + 1 chia hết cho a (2)
Từ (1) và (2) ta được :
n+ 1 - n chia hết cho a
=> 1 chia hết cho a
=> a = 1
=> ƯC ( n, n+1) = 1
=> n và n + 1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
Giải giúp mình bài này với: Cho a và b là 2 số tự nhiên khác 0. Biét trong4 mệnh đề sau thì có 3 mệnh đề đúng và 1 mệnh đề sai
1)a+1 là bội của 3
2)(a+b) chia hết cho 2
3)a+7b là số nguyên tố.
4) a=2b+5. Tìm a và b ( nhanh lên nhé mai mình phải nộp bài rồi )
Cho biết a và b là hai số tự nhiên liên tiếp ( a nhỏ hơn b) . Chứng tỏ a và b là hai số nguyên tố cùng nhau ?
Chi tiết chút nhé mấy bạn , vì ..................... mình ..................... ngu toán nhé !
Giả sử 2 số đó là a, b. Chẳng hạn b = a + 1. gọi d là ước chung lớn nhất của a, b. do cách phân tích của b = a+1 và d là ước của b,a nên d phải là ước của 1, nên d trùng 1
=>xong^^
Lưu ý a = b + c, một số là ước của a và b thì phải là ước của c, hoặc a, b chia hết một số thì c cũng phải chia hết số đó
giúp mình giải hai bài nàu nha
bài 1.tìm 4 số tự nhiên liên tiếp có tíc bằng 255024
bài 2.tìm số tự nhiên a và b sao cho (a+b)x(a-b)=2010
làm ơn giúp mình với,mai lại phải nộp bài rồi.nhanh nhé.cảm ơn các bạn
Mai mình nộp bài rồi, giúp mình với!!!!!
1.tìm hai số tự nhiên a, b sao cho a+b =128 và UCLN(a, b)=16
2. Tìm số nguyên tố p sao cho p+10; p+14 cũng là nguyên tố.
2. Ta có:
+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2
+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3
+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)
=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1
=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.
Vậy p = 3.
2) do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
Làm biếng làm quá nên sợt mạng nha
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
A=2^0+2^1+2^2+....+2^250
B=2^251
Chứng tỏ A và B là 2 số tự nhiên liên tiếp. Ai giúp với mai nộp rồi
Bài 11.
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 12.Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
giúp mình nha các bạn.
Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải.
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau:
1) Dự đoán kết quả (tính trong đầu):
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^
Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:
Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath
b1 CHỨNG minh rằng a, 7n = + 10 và 5n + 7 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. ( n thuộc N )
b, 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n
b2 tìm số tự nhiên a , biết rằng khi chia 350 cho a thì dư 14 , còn khi chia 320 cho a thì dư 26 ?
b3 biết rằng số 996 và 632 khi chia cho n đều dư 16 tìm n ?
giúp mình với nha chiều mai mình nộp cho cô rồi ai giaỉ nhanh du là 1 trong số các bài này mình kích cho