cho tam giác ABC. D là 1 điểm di động trên cạnh AC.Gọi G là trọng tâm của tam giác ABD. Các đường thẳng CG và BD cắt nhau tại E. Chứng minh rằng \(\frac{EB}{ED}-\frac{CA}{CD}\) không đổi khi D di chuyển trên cạnh AC
Cho tam giác ABC. D là một điểm di động trên cạnh AC. Gọi G là trọng tâm của tam giác ABD. Các đường thẳng CG và BD cắt nhau tại E. Chứng minh rằng: EB/ED - CA/CD không đổi khi điểm D di chuyển trên cạnh AC
cho tam giác ABC. D là 1 điểm di động trên cạnh AC.Gọi G là trọng tâm của tam giác ABD. Các đường thẳng CG và BD cắt nhau tại E. Chứng minh rằng \(\frac{EB}{ED}-\frac{CA}{CD}\) không đổi khi D di chuyển trên cạnh AC
Bài 1: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại
K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng
tâm của tam giác ABC
Bài2 : Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D
thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2. Chứng
minh rằng:
a) Tam giác DBM và MCE đồng dạng
b) Tam giác DME cùng đồng dạng với hai tam giác trên.
c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.
d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.
GIẢI GIÚP MÌNH VỚI Ạ MÌNH CẦN GẤP !!! CẢM ƠN!!
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.
Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.
Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.
Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC
. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng
a) Tam giác NBC đồng dạng với tam giác BCM b) BM vuông góc với CN.
Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂
. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.
Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:
a) Tam giác DBM và MCE đồng dạng
b) Tam giác DME cùng đồng dạng với hai tam giác trên.
c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.
d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm của các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G. Đường thẳng IG cắt đường thẳng BC tại E. Cmr; Khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC. Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I. Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: Tứ giác AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\)
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Cmr khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi.
bạn ưi đề sai ạ mk ko vẽ hik đc
bạn xem lại đề hộ vs ạ
Cho tam giác ABC nội tiếp đường tròn (O), D là 1 điểm trên cạnh BC ( D khác B và C). Gọi M,N lần lượt là trung điểm các cạnh AB,AC. Đường thẳng MN cắt (O) tại các điểm P,Q (P,Q lần lượt thuộc cung AB và cung AC). Đường tròn ngoại tiếp tam giác BDP cắt AB tại I (khác B). Các đường thẳng DI và AC cắt nhau tại K.
a) C/m: Tứ giác AIPK nội tiếp và \(\frac{PK}{PD}=\frac{QB}{QA}\).
b) Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (khác P). Đường thẳng IG cắt đường thẳng BC tại E. Cmr khi D di chuyển trên BC thì \(\frac{CD}{CE}\)không đổi.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi D là 1 điểm thay đổi trên cạnh BC. Đường tròn ngoại tiếp các tam giác ABD và ACD lần lượt cắt AC,AB tại E,F. Gọi K là giao điểm của BE và CF.
a) Chứng minh: Nếu O,A,D thẳng hàng thì HK // BC ?
b) Kí hiệu diện tích tam giác BKC =S .Khi D thay đổi ta luôn có \(S\le\left(\frac{BC}{2}\right)^2.tan\frac{\widehat{BAC}}{2}\) ?
b) Gọi I là tâm ngoại tiếp tam giác AEF. Chứng minh BF.BA -CE.CA = BD2 - CD2 và DI vuông góc BC ?
a) Ta thấy: \(\Delta\)ABC nhận H làm trực tâm nên ^BHC + ^BAC = 1800 (1)
Ta có: ^FKE = ^BKC = 1800 - ^KBC - ^KCB = 1800 - ^EAD - ^FAD = 1800 - ^EAF => ^BKC + ^BAC = 1800 (2)
Từ (1) và (2) suy ra: ^BHC = ^BKC => Tứ giác BHKC nội tiếp => ^KHC = ^KBC = ^CAD
Mà AD đi qua tâm ngoại tiếp (O) của \(\Delta\)ABC, AH vuông góc BC nên dễ thấy ^CAD = ^BAH
Từ đó: ^KHC = ^BAH = ^BCH => HK // BC (2 góc so le trong bằng nhau) (đpcm).
b) Qua B kẻ đường thẳng song song với CK cắt (O) tại điểm thứ hai G.
Xét (O): ^BGC + ^BAC = 1800. Mà ^BKC + ^BAC =1800 (cmt) nên ^BGC = ^BKC
=> ^KBC = ^GCB => BK // CG => Tứ giác BKCG là hình bình hành => S = SBGC
Hạ GT vuông góc BC thì S = SBGC = GT.BC/2 < G0L.BC/2 (Với G0 là điểm chính giữa cung BC không chứa A)
Lại có: ^LBG0 = 1/2.Sđ(BC = ^BAC/2 => G0L = BL.tan^BAC/2 hay G0L = BC/2 . tan^BAC/2
Suy ra: S < BC/2 . tan^BAC/2 . BC/2 = (BC/2)2.tan^BAC/2 (đpcm).
c) +) Chứng minh BF.BA - CE.CA = BD2 - CD2 ?
Theo tính chất góc nội tiếp: ^KED = ^BED = ^BAD = ^DAF = ^DCF = ^DCK => Tứ giác DKEC nội tiếp
Tương tự: Tứ giác DKFB nội tiếp. Áp dụng phương tích đường tròn:
BF.BA - CE.CA = BD.BC - CD.CB = BC(BD-CD) = (BD+CD)(BD-CD) = BD2 - CD2 (đpcm).
+) Chứng minh: DI vuông góc với BC ?
Từ câu a ta có: ^EKF + ^EAF = 1800 => Tú giác AEKF nội tiếp => K nằm trên (AEF)
Nối I với E và F thì có: ^IFK + ^IEK = ^IKF + ^IKE = ^EKF = ^BKC
=> ^IFK + ^IEK + ^KBC + ^KCB = ^IFK + ^IEK + ^KFD + ^KED = ^IFD + ^IED = 1800 (Do DKEC;DKFB nội tiếp)
Suy ra: Tứ giác DEIF nội tiếp => ^IDF = ^IEF = ^IFE = ^IDE. Kết hợp với ^BDF = ^CDE (=^BAC)
Dẫn đến ^IDF + ^BDF = ^IDE + ^CDE => ^IDB = ^IDC => ID vuông góc BC (2 góc kề bù bằng nhau) (đpcm).
Cho hỏi sương sương Cho tam giác ABC nội tiếp đường tròn (O) sao cho tâm O nằm trong tam giác. Gọi M là trung điểm của cạnh AB, kẻ MK vuông góc với BC. Biết AB = 30cm, MK = 12cm, BC = 36cm. Tính bán kính đường tròn (O)