Tìm tất cả cá số nguyên a sao cho a2 +a +1 là một lũy thừa của 3
tìm tất cả số nguyên n sao cho n^2 + 3n + 1 là một lũy thừa của 3
Tìm tất cả các số nguyên n sao cho: n^2+3n+1 là 1 lũy thừa của 3
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên x sao cho: \(A=x^3+3x^2+x+3\)là lũy thừa số nguyên tố.
Bài này ở diễn đàn toán học nước ngoài thấy hay nên share.
Ta có \(A=\left(x+3\right)\left(x^2+1\right)\)
Mà A là lũy thừa số nguyên tố
=> \(\orbr{\begin{cases}x^2+1⋮x+3\\x+3⋮x^2+1\end{cases}}\)
+ Nếu \(x+3\ge x^2+1\)
=> \(-1\le x\le2\)
Thay vào ta được \(x=\left\{-1,0,1,2\right\}\)thỏa mãn đề bài
+ Nếu \(x+3< x^2+1\)
=> \(\orbr{\begin{cases}x>2\\x< -1\end{cases}}\)
=> \(x^2+1=k\left(x+3\right)\)với k là số nguyên
=> \(k=\frac{x^2+1}{x+3}=\frac{x^2-9+10}{x+3}=x-3+\frac{10}{x+3}\)là số nguyên
=> \(x+3\in\left\{\pm1,\pm2,\pm5,\pm10\right\}\)
=> \(x\in\left\{-13,-8,-5,-4,-2,-1,2,7\right\}\)
Kết hợp với ĐK và thay vào ta được
\(x\in\left\{-2,-1,0,1,2\right\}\)
\(a=p_1^x.p_2^y,a^3=p_1^{3x}.p_2^{3y},a^2=p_1^{2x}p_2^{2y}\).
Tổng số ước của \(a^3\)là \(\left(3x+1\right)\left(3y+1\right)=40=5.8=4.10=2.20=1.40\)
Vì \(3x+1>3,3y+1>3\)nên ta chỉ có hai trường hợp:
- \(\hept{\begin{cases}3x+1=5\\3y+1=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)(loại)
- \(\hept{\begin{cases}3x+1=4\\3y+1=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)(thỏa)
Vậy số ước của \(a^2\)là \(\left(1.2+1\right)\left(3.2+1\right)=21\).
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
Cho a là một hợp số, khi phân tích ra thừa số nguyên tố chỉ có hai thừa số nguyên tố khác nhau là p 1 và p 2 . Biết a 3 có tất cả 40 ước, hỏi a 2 có bao nhiêu ước?
a = p 1 m . p 2 n => a 3 = p 1 3 m . p 2 3 n Số ước của a 3 là: (3m+1)(3n+1) = 40
Suy ra m = 1; n = 3 hoặc m = 3; n = 1
Số a 2 có số ước là (2m+1)(2n+1) = 3.7 = 21 ước