giải hpt\(\hept{\begin{cases}x^4+y^4=16\\x^6+y^6=64\end{cases}}\)
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
giải hpt
\(\hept{\begin{cases}x^5+xy^4=y^{10}+y^6\\\sqrt{4x+5}+\sqrt{y^2+8}=6\end{cases}}\)
hệ phương trình bậc cao thế
GIẢI hpt:
\(a,\hept{\begin{cases}\frac{1}{\sqrt{x}}+\sqrt{2.\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2.\frac{1}{x}}=2\end{cases}}\)
\(b,\hept{\begin{cases}x+y+2=4\\2xy-x^2=16\end{cases}}\)
\(c,\hept{\begin{cases}x\left(x-1\right)\left(x-2y\right)=0\\\frac{1}{x}-\frac{1}{y}=\frac{4}{3}\end{cases}}\)
Giải hpt
a/\(\hept{\begin{cases}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{cases}}\)
b/ \(\hept{\begin{cases}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{cases}}\)
a,\(\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-x}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\) b,\(\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-y}}+\frac{3}{\sqrt{y+6}}=\frac{13}{6}\end{cases}}\)
Giải hpt này giúp em với ạ
Mình đề câu a phải như vậy nè:
\(a,\hept{\begin{cases}\frac{1}{x-2}+\frac{1}{y-1}=1\\\frac{2}{x-2}-\frac{3}{y-1}=1\end{cases}}\)\(Đkxđ:\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)
Đặt: \(X=\frac{1}{x-2};Y=\frac{1}{y-1}\)
Ta có hệ sau:
\(\hept{\begin{cases}X+Y=1\\2X-3Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2\left(1-Y\right)-3Y=1\end{cases}}}\Leftrightarrow\hept{\begin{cases}X=1-Y\\2-5Y=1\end{cases}\Leftrightarrow\hept{\begin{cases}X=\frac{4}{5}\\Y=\frac{1}{5}\end{cases}}}\)
Với \(X=\frac{4}{5}\Rightarrow\frac{1}{x-2}=\frac{4}{5}\Leftrightarrow4\left(x-2\right)=5\Leftrightarrow x=\frac{13}{4}\)
Với \(Y=\frac{1}{5}\Rightarrow\frac{1}{y-1}=\frac{1}{5}\Leftrightarrow y-1=5\Leftrightarrow y=6\)
Vậy nghiệm của hệ pt là: \(\left(x;y\right)=\left(\frac{13}{4};6\right)\)
Câu b e nghĩ đề như vậy nè:
\(b,\hept{\begin{cases}\frac{7}{\sqrt{x-7}}-\frac{4}{\sqrt{y+6}}=\frac{5}{3}\\\frac{5}{\sqrt{x-7}}+\frac{3}{\sqrt{y+6}}=\frac{3}{6}\end{cases}}\) \(Đkxđ:\hept{\begin{cases}x>7\\x>-6\end{cases}}\)
Đặt \(\frac{1}{\sqrt{x-7}}=a\left(a>0\right);\frac{1}{\sqrt{y+6}}=b\left(b>0\right)\)
Ta có hệ pt mới: \(\hept{\begin{cases}7a-4b=\frac{5}{3}\\5a+3b=\frac{13}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{1}{6}\end{cases}}\left(tmđk\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-7}}=\frac{1}{3}\\\frac{1}{\sqrt{y+6}}=\frac{1}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x-7}=3\\\sqrt{y+6}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x-7=9\\x+6=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=30\end{cases}\left(tmđk\right)}\)
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(16;30\right)\)
Giải HPT: \(\hept{\begin{cases}x\left(x+4\right)+\sqrt{x+2}+3=4y\left(y-1\right)+\sqrt{2y-1}\\y^2=x+6\end{cases}}\)
Giải HPT
\(\hept{\begin{cases}\frac{2x-3y}{4}-\frac{x+y-1}{5}=2x-y-1\\\frac{4x+y-2}{4}=\frac{2x-y-3}{6}-\frac{x-y-1}{3}\end{cases}}\)
Giải hpt: \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+2\left(x+y\right)^2=2\left(2+3xy\right)\\\sqrt{3x^4+6x^3y}+\sqrt{3y^4+6xy^3}=6\end{cases}}\)
giải hpt:
\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\\y^2-5x^2-4xy+16x-8y+16=0\end{cases}}\)
(=)\(\hept{\begin{cases}y^2=\left(5x+4\right)\left(4-x\right)\left(1\right)\\y^2-4xy-8y+\left(16x-5x^2+16\right)=0\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được: (2) (=) 2y2 -4xy -8y =0 (=) y2 - 2xy - 4y =0 (=) y(y-2x-4)=0 (=) y=0 hoặc y=2x +4
Với y=0 => x=-4/5 hoặc x=4
Với y=2x+2. Thế vào (1) ta được x=0 và y=4