Giải hệ phương trình: \(\hept{\begin{cases}x^9+y^9=1\\x^{10}+y^{10}=1\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)
Ta xét 3 trường hợp
TH1: x=2
Khi đó hệ tương đương với:
\(\hept{\begin{cases}0+2\left|y-1\right|=9\\2+\left|y-1\right|=-1\end{cases}}\)
<=> \(\hept{\begin{cases}\left|y-1\right|=\frac{9}{2}\\\left|y-1\right|=-3\end{cases}}\)( Vô lý)
=> Vô nghiệm
TH2: x>2
Khi đó hệ tương đương với:
\(\hept{\begin{cases}x-2+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{cases}}\)
Trừ 2 PT của hệ ta được
\(\left|y-1\right|-2=10\)
<=>\(\left|y-1\right|=12\)
=>\(\orbr{\begin{cases}y=13\\y=-11\end{cases}}\)và \(x=-13\)
TH3: x<2
Khi đó hệ tương đương với:
\(\hept{\begin{cases}2-x+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{cases}}\)
Cộng 2 PT của hệ vế vs vế rồi tương tự TH2 ta tính đc:
\(\left(x;y\right)=\left(-3;3\right);\left(-3;-1\right)\)
Vậy...
a) \(\hept{\begin{cases}\left(x+1\right)\left(y-1\right)=2\\\left(x-3\right)\left(y+1\right)=-6\end{cases}}\)
b) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
c) \(\hept{\begin{cases}3x+5y-2xy=9\\2x+3y+xy=10\end{cases}}\)
GIẢI CÁC HỆ PHƯƠNG TRÌNH HỘ MÌNH VỚI Ạ. CẢM ƠN NHIỀU!
1. Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\frac{x}{y}-\frac{x}{y+12}=1\\\frac{x}{y-2}-\frac{x}{y}=2\end{cases}}\) b) \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
c) \(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\) d) \(\hept{\begin{cases}x+y+|x|=25\\x-y+|y|=30\end{cases}}\)
2. Tìm các giá trị của m để nghiệm của hệ phương trình sau là các số dương: \(\hept{\begin{cases}x-y=2\\mx+y=3\end{cases}}\)
Giúp với mn ơi
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
Bạn xét phương trình thứ nhất
bằng cách chia trường hợp rồi tìm
giải hệ phương trình\(\hept{\begin{cases}x+xy+y=1\\y+yz+z=4\\z+zx+x=9\end{cases}}\)
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Dùng cái đầu đi ạ
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
giải hệ phương trình
\(\hept{\begin{cases}2\sqrt{2x+y}=3-2x-y\\\sqrt[3]{x+6}+\sqrt{1-y}=4\end{cases}}\)
\(\hept{\begin{cases}\sqrt{2x}+\sqrt{2y}=6\\\sqrt{2x+5}+\sqrt{2y+9}=9\end{cases}}\)
Giải hệ phương trình :
1, \(\hept{\begin{cases}x+y+z=3xy\\x^2+y^2+z^2=3xz\\x^3+y^3+z^3=3yz\end{cases}}\)
2,\(\hept{\begin{cases}x^3-y^3=9\\x^2+2y^2=x-4y\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^3+\sqrt{x+2y+1}=x^2y+y+1\\\left(x+y-1\right)\sqrt{y+1}=10\end{cases}}\)